
A Framework for Computer-Aided Design of
Educational Domain Models

Eric Butler, Emina Torlak, and Zoran Popović
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Abstract. Many educational applications, from tutoring to problem
generation, are built on a formal model of the operational knowledge for a
given domain. These domain models consist of rewrite rules that experts
apply to solve problems in the domain; e.g., factoring, ax+bx→ (a+b)x,
is one such rule for K-12 algebra. Domain models currently take hundreds
of hours to create, and they differ widely in how well they meet educa-
tional objectives such as maximizing problem-solving efficiency. Rapid,
objective-driven creation of domain models is a key challenge in the de-
velopment of personalized educational tools.

This paper presents RuleSy, a new framework for computer-aided au-
thoring of domain models for educational applications. RuleSy takes as
input a set of example problems (e.g., x+1 = 2), a set of basic axiom rules
for solving these problems (e.g., factoring), and a function expressing the
desired educational objective. Given these inputs, it first synthesizes a set
of sound tactic rules (e.g., combining like terms) that integrate multiple
axioms into advanced problem-solving strategies. The axioms and tac-
tics are then searched for a domain model that optimizes the objective.
RuleSy is based on new algorithms for mining tactic specifications from
examples and axioms, synthesizing tactic rules from these specifications,
and selecting an optimal domain model from the axioms and tactics.

We evaluate RuleSy on the domain of K-12 algebra, finding that it re-
covers textbook tactics and domain models, discovers new tactics and
models, and outperforms a prior tool for this domain by orders of mag-
nitude. But RuleSy generalizes beyond K-12 algebra: we also use it to
(re)discover proof tactics for propositional logic, demonstrating its po-
tential to aid in designing models for a variety of educational domains.

1 Introduction

A key challenge in the design of educational applications is modeling the oper-
ational knowledge that captures the expertise for a given domain. This knowl-
edge takes the form of a domain model, which consists of condition-action rules
that experts apply to solve problems in the domain. For example, factoring,
ax + bx → (a + b)x, is one such rule for K-12 algebra: its condition recognizes
problem states that trigger rule application, and the action specifies the re-
sult. Educational applications rely on domain models to automate tasks such as



problem and progression generation [1], hint and feedback generation [2], student
modeling [3], and misconception detection [4].

At present, domain models are created by hand, taking hundreds of hours
of development time to model a single hour of instructional material [5]. This
limits applications to using one out of many possible models that capture the
operational knowledge for a domain. Yet recent research [6] shows that some
students need over six times more content than others to master a domain. To
best serve a broad population of students, applications therefore need multiple
models that optimize different educational objectives [7,8].

To illustrate the difficulty of model authoring, consider creating a domain
model for K-12 algebra. Suppose that our model includes the basic rules, or ax-
ioms, for solving algebra problems: e.g., factoring and constant folding, c0+c1 →
c2, where c0 and c1 are constants and c2 is their sum. Should this model also in-
clude the rule for combining like terms, c0x+c1x→ c2x, which composes factor-
ing and constant folding? While such compound rules, or tactics, are redundant
with respect to the axioms, standard domain models (e.g., [9]) include them to
enable efficient problem solving with fewer steps and less cognitive load [10]. But
there is a limit to how many rules students can remember, so the optimal set of
axioms and tactics depends on the desired tradeoff between maximizing solving
efficiency and minimizing the memorization burden.

This paper presents a new approach for rapid, objective-driven creation of
domain models that is based on program synthesis. We realize this approach in
RuleSy, a framework that assists developers with creating tactics and domain
models that optimize desired objectives. The RuleSy framework was motivated
by practical experience: the first and last authors work for Enlearn, an educa-
tional technology company building adaptive K12 applications that need custom
domain models. Developers of such applications are the intended users of this
work, and Enlearn is in the process of adopting key ideas from RuleSy.

RuleSy aids developers by generating an optimal domain model given a set
of axioms for the domain, a set of example problems, and an optimization ob-
jective expressed in terms of rule and solution costs. Using the axioms and the
problems, RuleSy synthesizes an exhaustive set of tactics that combine multi-
ple axioms into advanced problem-solving strategies. Each of these tactics is a
sound rule that shortens the solution to at least one example problem compared
to using the axioms alone. Following synthesis, RuleSy applies discrete opti-
mization to produce a subset of the axioms and tactics (i.e., a domain model)
that both solves the example problems and optimizes the given objective.

RuleSy’s algorithms are designed to solve three core technical challenges:

– Specification. Synthesizing tactics requires a functional specification of their
behavior. Since tactics compose multiple axioms, a sequence of axioms may
seem to provide such a specification. For example, we may expect A ◦ A,
where A is the additive identity rule x + 0 → 0, to describe the tactic
(x+0)+0→ x. But because a condition-action rule can fire on any part of the
problem state, A◦A describes a set of distinct tactics that also includes, e.g.,
x+0 = y+0→ x = y. RuleSy addresses this challenge with a new approach



for extracting tactic functions from the shortest axiom-based solutions to the
example problems. Each resulting tactic specification is sound with respect
to the axioms, and useful for solving at least one example in fewer steps.

– Synthesis. Given a tactic specification, the next challenge is to find a rule
that implements it. RuleSy represents rules as programs that operate on
problem states expressed as (abstract syntax) trees. Because these trees are
unbounded in size, the rule synthesis query cannot be expressed in existing
systems for syntax-guided synthesis (e.g., [11,12,13]). To address this chal-
lenge, RuleSy employs an efficient new reduction to a set of syntax-guided
synthesis queries over (carefully constructed) trees of bounded size. Our re-
duction exploits the structure of RuleSy’s specifications and programs to
ensure that the synthesized rules are sound over trees of any size, and to
asymptotically reduce the size of the synthesis search space.

– Optimization. The final challenge is to search the axioms and tactics for a
domain model that both solves the examples and optimizes the input objec-
tive. Finding such a model is undecidable in general, since an arbitrary set of
condition-action rules (i.e., a candidate model) may not be terminating [14].
RuleSy addresses this challenge with a new algorithm for deciding a more
constrained variant of the model optimization task: it finds a domain model
that solves the examples while minimizing the objective over the model’s
rules and the shortest (rather than all) solutions obtainable with those rules.

To evaluate our algorithms, we used RuleSy to model the domain of intro-
ductory K-12 algebra, comparing the output to a standard textbook [9] and a
prior tool [15] for this domain. Applying RuleSy to examples and axioms from
the textbook, we find that it both recovers the tactics presented in the book
and discovers new ones. We also find that RuleSy can recover the textbook’s
domain model, as well as discover variants that optimize different objectives.
Finally, we find that RuleSy significantly outperforms the prior tool, both in
terms of output quality and runtime performance.

To show that RuleSy generalizes beyond K-12 algebra, we used it to model
the domain of propositional logic proofs. Applying RuleSy to textbook [16]
axioms and exercises, we find that it synthesizes both new and standard tactics
for this domain (e.g., modus ponens), just as it did for K-12 algebra.

The rest of the paper is organized as follows. Section 2 illustrates RuleSy
on a toy algebra domain. Section 3 describes RuleSy’s language of condition-
action rules. Section 4 describes the new algorithms for specification mining,
rule synthesis, and model optimization. Section 5 presents our two case studies.
Section 6 reviews related work, and Section 7 concludes.

2 Overview

This section illustrates RuleSy’s functionality on a toy algebra domain. We
show the specifications, tactics, and models that RuleSy creates for this do-
main, given a set of example problems, axioms, and an objective.



2.1 Examples, Axioms, and Objectives

Figure 1 shows our example problems, axioms, and objective for toy algebra.

Examples. The problems (1b) are represented as syntax trees. We consider a
tiny subset of algebra that includes equations of the form x+

∑
i ci = ck, where

x is a variable and ci, ck are integer constants. Experts solve these problems by
applying condition-action rules until they obtain an equation of the form x = c.

Axioms. The axioms (1a) are expressed as programs in the RuleSy language
(Section 3). A rule program consists of a condition, which matches a syntax
tree with a specific shape, and an action, which creates a new tree by applying
editing operations (such as adding or removing nodes) to the matched tree. For
example, the axiom A matches trees of the form (+ 0 e . . .), where the order
of subtrees is ignored, and it rewrites such trees by removing the constant 0 to
produce (+ e . . .). The shown axioms can solve all problems in the toy algebra
domain. For example, we can solve p1 in two steps by applying B ◦A to obtain
x+ 1 +−1 = 5→B x+ 0 = 5→A x = 5. RuleSy uses the axioms to synthesize
tactic rules (Figure 3) that can solve the example problems in fewer steps.

Objective. The educational objective (1c) is expressed as a function of rule and
solution costs. Rule cost measures the complexity of a rule’s syntactic represen-
tation. Solution cost measures the efficiency of a solution in terms of the tree
edits performed to solve an example problem. These costs are proxy measures for
the difficulty of learning and applying knowledge in a given domain model [10].
RuleSy selects a domain model that best balances the trade-off between rule
complexity and solution efficiency specified by the objective.

2.2 Specifications, Tactics, and Domain Models

Specifications. To help with domain modeling, RuleSy first needs to synthe-
size a set of useful tactics, which can solve the input problems more efficiently
than the axioms alone. For example, we could solve p1 in one step if we had
a “cancelling opposite constants” tactic that composes the axioms B and A.
RuleSy determines which rules to synthesize, and how those rules should be-
have, by mining tactic specifications (Section 4.1) from the shortest solutions to
the example problems that are obtainable with the axioms (Figure 2a).

A RuleSy specification takes the form of a plan for applying a sequence
of axioms (Figure 2b). A plan describes which axioms to apply, in what order,
and how. Since an axiom may be applied to a problem in multiple ways, a plan
associates each axiom with an application index and a binding for the axiom’s
pattern. The application index identifies a subtree in the expression’s abstract
syntax tree (AST), and the binding specifies a mapping from the index space of
the axiom’s pattern to the index space of the subtree. The plan in Figure 2b spec-
ifies a generic tactic for cancelling opposite constants; for example, it solves p1 in
one step by reducing the expression (+x 1−1) to x (Figure 2c). In essence, plans



(define A ; Additive identity: (+ 0 e . . .)→ (+ e . . .)
(Rule (Condition (Pattern (Term + (ConstTerm) _ etc))

(Constraint (Eq? (Ref 1) 0)))
(Action (Remove (Ref 1)))))

(define B ; Constant folding: (+ c1 c2 . . .)→ (+ c . . .), c = c1 + c2
(Rule (Condition (Pattern (Term + (ConstTerm) (ConstTerm) etc))

(Constraint true))
(Action (Replace (Ref 1) (Apply + (Ref 1) (Ref 2)))

(Remove (Ref 2)))))

(define C ; Adding opposite: (= (+ e0 . . .) e1)→ (= (+ (− e0) e0 . . .) (+ e1 (− e0)))
(Rule (Condition (Pattern (Term = (Term + _ etc) _))

(Constraint true))
(Action (Replace (Ref 1) (Cons (Make - (Ref 1 1)) (Ref 1)))

(Replace (Ref 2) (Make + (Ref 2) (Make - (Ref 1 1)))))))

(a) Axioms in the RuleSy language (Section 3).

; Problem p0 : x+ 0 = 3
(= (+ x 0) 3)

; Problem p1 : x+ 1 +−1 = 5
(= (+ x 1 -1) 5)

; Problem p2 : x+ 2 = −4
(= (+ x 2) -4)

(b) Example problems.

f(R,G) = α
∑
R∈R

RuleCost(R) +

(1− α)

∑
G∈G SolCost(G)

|G|

(c) A sample objective function, where α ∈ [0, 1], and G
contains the shortest solutions obtained with the rulesR.

Fig. 1: The inputs to RuleSy for the toy algebra domain.

are functional specifications of tactics that can help solve the example problems
in fewer steps—and that are amenable to sound and efficient synthesis.

Tactics. Given a set of plans, RuleSy synthesizes the corresponding tactics
(Section 4.2), expressed in the same language (Section 3) as the input axioms.
Figure 3 shows two sample tactics synthesized for the plans (e.g., Figure 2b)
mined from the toy examples and axioms. These tactics perform fewer tree edits
than the axiom sequences they replace, leading to cheaper solutions. For example,
the tactic BA performs two tree edits, while the axiom sequence B◦A performs
three such edits. But the tactic also applies to fewer problem states than the
axioms. RuleSy uses discrete optimization, guided by the input objective, to
decide which axioms and tactics to include in a domain model.

Domain Models. The RuleSy optimizer (Section 4.3) searches the axioms and
tactics for a domain model that is sufficient to solve the example problems, while
minimizing the objective over all shortest solutions obtainable with such models.
Figure 4 shows two sample optimal models for the toy algebra domain. The
models R0.1 and R0.9 minimize the toy objective (Figure 1c) for different values
of the weighting factor α (0.1 and 0.9, respectively). The model R0.1 includes
more rules because lower values of α emphasize solution efficiency over domain
model economy. RuleSy helps with rapid navigation of such design tradeoffs.



(= (+ x 0) 3)

(= x 3)

A

(= (+ x 2) -4)

(= (+ -2 2 x) (+ -4 -2))

C

(= (+ 0 x) (+ -4 -2))

B

(= (+ -2 2 x) -6)

B

(= x (+ -4 -2))

A

(= (+ 0 x) -6)

B

(= x -6)

B A

B

(= (+ x 1 -1) 5)

(= (+ 0 x) 5)

B

(= x 5)

A

(a) All shortest solutions for the toy al-
gebra problems and axioms (Figure 1).

[〈B, [], {[] 7→ [], [1] 7→ [2], [2] 7→ [3]}〉,
〈A, [], {[] 7→ [], [1] 7→ [1]}〉]

(b) A plan for applying the axioms B ◦A.

Input (= (+ x 1 -1) 5) (= (+ 0 x) 5)

Axiom B A

Binding (= (+ 1 -1 x) 5) (= (+ 0 x) 5)

Output (= (+ 0 x) 5) (= x 5)

(c) Using the plan in (b) to solve the prob-
lem p1 (Figure 1b).

Fig. 2: A sample plan (b) mined from the shortest solutions (a) to the toy algebra
problems. The plan specifies a tactic for canceling opposite constants (c).

; Canceling opposite constants: (+ c −c e . . .)→ (+ e . . .).
(define BA

(Rule (Condition (Pattern (Term + (ConstTerm) (ConstTerm) _ etc))
(Constraint (Eq? (Ref 1) (Apply - (Ref 2)))))

(Action (Remove (Ref 1))
(Remove (Ref 2)))))

; Move negated constant to other side with only one other term:
; (= (+ c1 e . . .) c2)→ (= (+ e . . .) c), c = c2 − c1.
(define CBAB

(Rule (Condition (Pattern (Term = (Term + (ConstTerm) _ etc) (ConstTerm)))
(Constraint true))

(Action (Remove (Ref 1 1) 0)
(Replace (Ref 2) (Apply - (Ref 2) (Ref 1 1))))))

Fig. 3: Sample tactics synthesized for the toy plans (e.g., Figure 2b).

3 A Language for Condition-Action Rules

This section presents the RuleSy language for specifying condition-action rules.
The language is parametric in its definition of problem states. For concreteness,
we present an instantiation of RuleSy for the domain of K-12 algebra. We de-
scribe another instantiation, for the domain of propositional logic, in Section 5.

Specifying Problems and Rules. The RuleSy domain-specific language (DSL)
for algebra represents rules as programs that operate on problems expressed as
terms (Figure 5a). RuleSy is parametric in the definition of terms, but the
structure of rules is fixed. A rule consists of a condition, which determines if the
rule is applicable to a given term, and an action, which specifies how to transform

R0.1 = {A,BA,CBAB} R0.9 = {BA,CBAB}

Fig. 4: Optimal domain models for toy algebra (Figures 1 and 3).



program := (Rule cond action)

cond := (Condition (Pattern pattern)
:= (Constraint constr))

pattern := _ | (ConstTerm) | (VarTerm) | (BaseTerm)
| (Term op pattern+)

| (Term op pattern+ etc)
constr := true | pred | (And constr constr)

pred := (Eq? ref const) | (Neq? ref const)

action := (Action cmd+)
cmd := (Remove ref ) | (Replace ref expr)

expr := const | obj

obj := (Make op expr+)
| (Cons expr ref )
| (Cons expr obj)

const := int | ref | (Apply op const+)

ref := (Ref) | (Ref int+)

term := int | var | (op term+)
int := integer literal
var := identifier
op := + | - | * | / | =

(a) Syntax for the algebra DSL.

J(Rule c a)Kt = if JcKt then JaKt else ⊥
J(Condition p b)Kt = JpKt ∧ JbKt
J(Pattern p)Kt = JpKt
J(Constraint b)Kt = JbKt
J(Term o p1...pk)Kt = (t = (o t1 ... tk))∧

∀1≤i≤kJpiKti
J(Term o p1...pk etc)Kt = (t = (o t1 ... tn))∧

n ≥ k ∧ ∀1≤i≤kJpiKti
J(ConstTerm)Kt = literal(t)
J(VarTerm)Kt = variable(t)
J(BaseTerm)Kt = literal(t) ∨ variable(t)

J_Kt = true
JtrueKt = true
J(Eq? r e)Kt = (JrKt = JeKt)
J(Neq? r e)Kt = (JrKt 6= JeKt)
J(And b1 b2)Kt = Jb1Kt ∧ Jb2Kt
J(Action a1 ... ak)Kt = (Ja1K‖ ...‖JakK)(t)
J(Remove r)Kt = rm(t, index(r))
J(Replace r e)Kt = replace(t, index(r), JeKt)
J(Make o e1 ... ek)Kt = (o Je1Kt ... JekKt)
J(Cons e1 e2)Kt = cons(Je1Kt, Je2Kt)
J(Apply o e1 ... ek)Kt = JoK(Je1Kt, ... , JekKt)
J(Ref i1 ... ik)Kt = ref (t, [i1, ... , ik])

index((Ref i1 ... ik)) = [i1, ... , ik]
replace(t, [], s) = s
replace((o t1 ... tk), [i], s) = (o t1 ... ti−1 s ti+1 ... tk)
replace((o t1 ... tk), [i, j, ...], s) = (o t1 ... replace(ti, s, [j, ...]) ... tk)
rm((o t1 ... tk), [i]) = (o t1 ... ti−1 ti+1 ... tk)
rm((o t1 ... tk), [i, j, ...]) = (o t1 ... rm(ti, [j, ...]) ... tk)
cons(t, (o t1 ... tk)) = (o t t1 ... tk)

fire(R, t) = {JRKt | JRKt 6= ⊥} where literal(t) ∨ variable(t)

fire(R, t) = {JRKtβ | JRKtβ 6= ⊥ ∧ β ∈ B(pattern(R), t)} ∪
⋃

1≤i≤n{replace(t, [i], s) | s ∈ fire(R, ti)}
where t = (o t1 ... tn)

(b) Semantics for the algebra DSL. The expression (o t1 . . . tn) constructs a term
with the given operator and children;‖ stands for parallel function composition; [x, . . .]
is a sequence; and other notation is described in Definitions 1-4.

Fig. 5: Syntax (a) and semantics (b) for the RuleSy algebra DSL.

terms. Conditions include a pattern to match against the term’s structure and a
boolean constraint to evaluate on that structure. Actions are sequences of term
editing operations, such as removing or replacing a subterm. Both constraints
and actions can use references to identify specific subterms of the term to which
the rule is being applied. The toy problems (Figure 1b) and rules (Figures 1a
and 3) from Section 2 are all valid terms and programs in the algebra DSL.

Semantics of Rule Firing. Rule programs denote partial functions from terms
to terms (Figure 5b). If a term satisfies the rule’s condition, the result is a term;
otherwise, the result is an undefined value (⊥). We solve problems by applying
rules exhaustively, via fire(R, t), on permutations and subterms of a given term.
Permuting a term (Definition 2) reorders the arguments to any commutative
operators while leaving the rest of the term’s structure unchanged. To fire a rule
on a term, we permute the term “just enough” to establish a one-to-one mapping



between the rule’s pattern and the term’s structure (Definition 4). By establish-
ing such mappings for all subterms of a term, fire implements the intuitive notion
of rule application given in Section 2: a rule fires on all subterms that satisfy the
rule’s condition, ignoring the order of arguments to commutative operators.

To illustrate the semantics of fire, consider firing the rule A from Figure 1a
on the term t = (+ (∗ x 2) 0). The set refs(t) of all valid tree indices for t consists
of the indices [], [1], [1, 1], [1, 2], [2], which identify the subterms t, (∗ x 2), x, 2, 0,
respectively (Definition 1). Since both + and ∗ are commutative, valid tree per-
mutations Π(t) for t consist of the following mappings (Definition 2):

tπ0 = t π0 = {[] 7→ [], [1] 7→ [1], [1, 1] 7→ [1, 1], [1, 2] 7→ [1, 2], [2] 7→ [2]}
tπ1 = (+ (∗ 2 x) 0) π1 = {[] 7→ [], [1] 7→ [1], [1, 1] 7→ [1, 2], [1, 2] 7→ [1, 1], [2] 7→ [2]}
tπ2 = (+ 0 (∗ x 2)) π2 = {[] 7→ [], [1] 7→ [2], [1, 1] 7→ [2, 1], [1, 2] 7→ [2, 2], [2] 7→ [1]}
tπ3 = (+ 0 (∗ 2 x)) π3 = {[] 7→ [], [1] 7→ [2], [1, 1] 7→ [2, 2], [1, 2] 7→ [2, 1], [2] 7→ [1]}

Next, we observe that the scope (Definition 3) of A’s pattern consists of the
indices {[], [1], [2]}. Finally, we use the permutations of t and the scope of A
to compute all valid bindings for A and t (Definition 4): β0 = {[] 7→ [], [1] 7→
[1], [2] 7→ [2]} with tβ0 = tπ0 , and β1 = {[] 7→ [], [1] 7→ [2], [2] 7→ [1]} with
tβ1 = tπ2 . The rule A applies only to tβ1 , so fire(A, t) yields {(∗ x 2)}.

Definition 1 (Tree Indices). A tree index is a finite sequence of positive inte-
gers that identifies a subterm of a term as follows: ref (t, []) = t; ref ((o t1 . . . tk), [i])
= ti if 1 ≤ i ≤ k; ref ((o t1 . . . tk), [i, j, . . .]) = ref (ti, [j, . . .]) if 1 ≤ i ≤ k;
ref (t, idx ) = ⊥ otherwise. We write refs(t) for the set {idx | ref (t, idx ) 6= ⊥}.

Definition 2 (Tree Permutations). A function π is a tree permutation for
a term t if it defines a bijective mapping from refs(t) to itself. A permutation
π is valid for t if it reorders only the children of commutative operators in t.
That is, for each [i1, . . . , in] ∈ refs(t), π([i1, . . . , in]) = [j1, . . . , jn] such that
π([i1, . . . , in−1]) = [j1, . . . , jn−1] and in = jn or ref (t, [i1, . . . , in−1]) = (op . . .)
where op is commutative. We write Π(t) to denote the set of all valid permuta-
tions of t, and tπ to denote the term obtained by applying π ∈ Π(t) to refs(t).

Definition 3 (Scopes). A tree index idx is in the scope of a pattern p if
scope(p, idx ) 6= ⊥ where: scope(p, []) = p; scope((Term o p1 . . . pk), [i]) = pi if
1 ≤ i ≤ k; scope((Term o p1 . . . pk), [i, j, . . .]) = scope(pi, [j, . . .]) if 1 ≤ i ≤ k;
scope((Term o p1 . . . pk etc), idx ) = scope((Term o p1 . . . pk), idx ); and scope(p,
idx )=⊥ otherwise. We write scope(p) to denote the set {idx | scope(p, idx ) 6= ⊥}.

Definition 4 (Bindings). Let β be a bijection from tree indices to tree indices
with a finite domain dom(β) and range ran(β). We say that β is a binding for a
pattern p if the domain of β is the scope of p; i.e., dom(β) = scope(p). A binding
β is valid for a term t if there is a permutation π ∈ Π(t) such that β−1 ⊆ π and
for all [i1, . . . , in] ∈ refs(t), if [i1, . . . , ik] ∈ ran(β) and [i1, . . . , ik+1] 6∈ ran(β),
then π([i1, . . . , in]) = β−1[i1, . . . , ik]⊕ [ik+1, . . . , in], where ⊕ stands for sequence
concatenation. We define bind(β, t) to return an arbitrary but deterministically
chosen permutation π ∈ Π(t) for which β is valid, if one exists, or ⊥ otherwise.
We write B(p, t) to denote the set {β | dom(β) = scope(p) ∧ bind(β, t) 6= ⊥} of
all valid bindings for p and t, and we write tβ to denote tbind(β,t).



Semantics of Conditions and Actions. Rule conditions denote functions from
terms to booleans, and actions are functions from terms to terms. A condition
maps a term to ‘true’ if the term matches the condition’s pattern and satisfies
its constraint. Constraints capture conditions that are not expressible through
pattern matching, such as two subterms being syntactically equal. Actions apply
a set of parallel functional edits to disjoint subterms of the input term t. Actions
can create new terms (via Make), and both conditions and actions can evaluate
expression terms with literal arguments (via Apply).

Well-formed Rule Programs. The meaning of rule conditions and actions is
defined only for well-formed programs (Definition 5), which contain no invalid
references. A reference expression (Ref i1 . . . in) specifies an index [i1, . . . , in] into
the matched term’s abstract syntax tree (Definition 1). If a term matches the
pattern of a well-formed program, then every reference in that program specifies
a valid index into the term’s AST. Additionally, Apply and Cons expressions ref-
erence subterms of the right kind; the program’s actions edit disjoint subtrees of
the term’s AST; and (in)equality predicates only compare subterms matched by
terminal patterns. RuleSy consumes and creates only well-formed programs.

Definition 5 (Well-Formed Programs). Let R be a rule with the condition
(Condition (Pattern p) (Constraint b)) and action (Action a1 . . . an). We say
that R is well-formed if the following constraints hold:

– index (r) ∈ scope(p) for all references r in R.
– scope(p, index (r)) = (ConstTerm) for all references r in all Apply expressions.
– scope(p, index (r)) = (Term . . .) for all (Cons e r) expressions.
– scope(p, index (r)) 6= (Term . . .) for all references r in all Eq?, Neq? predicates.
– Let rk denote the first argument to a command ak in R. For all distinct
ai, aj in R, index (ri) is not a prefix of index (rj) and vice versa.

4 Rule Mining, Synthesis, and Optimization

Given an educational objective, example problems, and axioms for solving those
problems, RuleSy produces an optimal domain model in three stages: (1) speci-
fication mining, (2) rule synthesis, and (3) domain model optimization. This sec-
tion presents the algorithms underlying each stage and states their guarantees.
Proofs of these statements are available in our technical report on RuleSy [17].

4.1 Specification Mining

Specification mining takes as input a set of examples and axioms, and produces a
set of specifications for tactic rules. We describe the key challenge in specifying
tactics; show how our notion of execution plans addresses it; and present our
FindSpecs algorithm for computing these plans.

Specifying Tactics. To enable efficient synthesis of useful rules, a tactic spec-
ification should capture the semantics of a rule—i.e., a partial function—that



can help solve some problems in fewer steps than the axioms alone. But natural
forms of specification, such as axiom sequences, do not satisfy this requirement.
To see why, consider the axiom sequence I ◦ B, where I implements factor-
ing (Figure 6) and B implements constant folding (Figure 1a). Intuitively, we
would like I ◦ B to specify the tactic IB for combining like terms (Figure 6).
Yet no interpretation of this sequence captures the meaning of the tactic. If we
interpret I ◦ B using the fire semantics, the result is a non-functional relation
that includes the meaning of multiple tactics. For example, firing I ◦ B on the
term (+ (∗ 2x) (∗ 3x) (∗ 4 y) (∗ 5 y)) produces both (+ (∗ 5x) (∗ 4 y) (∗ 5 y)) and
(+ (∗ 9 y) (∗ 2x) (∗ 3x)). But if we interpret I ◦B as the composition of the par-
tial functions denoted by its axioms—i.e., as λt.JBK(JIKt)—the resulting relation
is empty and thus fails to specify a useful tactic.

(define I ; (+ (∗ e0 e) (∗ e1 e) . . .)→ (+ (∗ (+ e0 e1) e) . . .)
(Rule (Condition (Pattern (Term + (* _ _) (* _ _) etc))

(Constraint (Eq? (Ref 1 2) (Ref 2 2))))
(Action (Remove (Ref 1))

(Replace (Ref 2 1) (Make + (Ref 1 1) (Ref 2 1))))))

(define IB ; (+ (∗ c0 e) (∗ c1 e) . . .)→ (+ (∗ c e) . . .), c = c0 + c1
(Rule (Condition (Pattern (Term + (* (ConstTerm) _) (* (ConstTerm) _) etc))

(Constraint (Eq? (Ref 1 2) (Ref 2 2))))
(Action (Remove (Ref 1))

(Replace (Ref 2 1) (Apply + (Ref 1 1) (Ref 2 1))))))

Fig. 6: The tactic IB for combining like terms combines factoring (I) and con-
stant folding (B in Figure 1a), but no interpretation of I◦B captures its behavior.

Execution Plans. We address the challenge of specifying tactic rules with exe-
cution plans. An execution plan (Definition 7) is a partial function from terms
to terms, encoded as a sequence of execution steps (Definition 6). An execution
step combines a rule R with a tree index idx and a binding β for R’s pattern.
The step 〈R, idx , β〉 uses the binding β, if it is valid for the subterm ref (t, idx ) of
a term t, to evaluate the rule R. An execution step thus specifies where to apply
a rule (i.e., to which subterm of a term) and how (i.e., to which permutation
of the subterm), while an execution plan composes a sequence of such rule ap-
plications. For example, the plan [〈I, [], β0〉, 〈B, [1, 1], β0〉], where β0 denotes the
identity binding, captures the behavior of the combine-like-terms rule on terms
of the form (+ (∗ c0 e) (∗ c1 e) . . .). Moreover, firing a program that implements
this plan (e.g., IB) captures the common understanding of what it means to
combine like terms when solving algebra problems. Execution plans thus satisfy
our requirement for tactic specifications by defining useful functional relations.

Definition 6 (Execution Step). An execution step 〈R, idx , β〉 consists of a
rule program R, tree index idx , and a binding β for R’s pattern. A step denotes
a partial function over terms where J〈R, idx , β〉Kt = replace(t, idx , JRKsβ) if s =
ref (t, idx ), β ∈ B(pattern(R), s), and JRKsβ 6= ⊥; otherwise, J〈R, idx , β〉Kt = ⊥.



Definition 7 (Execution Plan). An execution plan S is a finite sequence of
execution steps [〈R1, idx 1, β1〉, . . . , 〈Rn, idxn, βn〉]. The plan S composes its steps
as follows: JSKt0 = tn if J〈Ri, idx i, βi〉Kti−1 = ti and ti 6= ⊥ for all 1 ≤ i ≤ n;
otherwise, JSKt0 = ⊥. The plan S is general if the step indices idx 1, . . . , idxn
have the empty index [] as their greatest common prefix.

Computing Plans. RuleSy mines execution plans from a set of example prob-
lems and axioms using the FindSpecs procedure shown in Figure 7. FindSpecs
first obtains a solution graph (Definition 8) of all shortest solutions to each ex-
ample problem (line 3). It then applies the FindPlan procedure to compute an
execution plan for every path between every pair of nodes in each resulting graph
(line 6). These plans specify the set of sound partial functions (Definition 10)
that can shorten the solution to at least one example problem (Theorem 1).

1: function FindSpecs(T : set of terms, A: set of well-formed programs)
2: S ← {}
3: for all 〈N,E〉 ∈ {Solve(t,A) | t ∈ T} do
4: for all src, tgt ∈ N do
5: paths ← allPaths(src, tgt, 〈N,E〉) . All paths from src to tgt

6: S ← S ∪ {〈FindPlan(p), src, tgt〉 | p ∈ paths ∧ |p| > 1}
7: return S . Execution plans for T and A

8: function FindPlan(p : n0 →R1
n1 →R2

. . .→Rk
nk)

9: S ← an empty array of size k with indices starting at 1
10: for all 1 ≤ i ≤ k do
11: idx , β ← firingParameters(Ri, ni−1, ni)
12: S[i]← 〈Ri, idx , β〉
13: root ← greatestCommonPrefix({idx | 〈R, idx , β〉 ∈ S})
14: for all 1 ≤ i ≤ k do . Drop the common prefix from all indices

15: 〈R, idx , β〉 ← S[i]
16: S[i]← 〈R, dropPrefix(idx , root), β〉
17: return S . A general execution plan for replaying p

Fig. 7: FindSpecs takes as input a set of example problems T and axioms A,
and produces a set of plans S for composing the axioms into tactics.

Definition 8 (Solution Graph). A directed multigraph G = 〈N,E〉 is a solu-
tion graph for a term t, predicate Reduced, and rules R if t ∈ N ; E is a set of
labeled edges 〈src, tgt〉R such that src, tgt ∈ N , R ∈ R, and tgt ∈ fire(R, src); G
is acyclic; t is the only term in G with no incoming edges; G contains at least one
sink term with no outgoing edges; and each sink satisfies the Reduced predicate.

FindPlan takes as input a path p in a solution graph and produces a gen-
eral execution plan (Definition 7) for replaying that path (Definition 9). The
first loop, at lines 10-12, creates a plan that replays the path p from n0 to nk
exactly: i.e., JSKn0 = nk. The function firingParameters (line 11) returns the
parameters used to fire the rule Ri on ni−1 to produce ni. These include the
index idx of the subterm to which Ri was applied, as well as the binding β for
permuting that subterm. The resulting execution step (line 12) thus reproduces
the edge 〈ni−1, ni〉Ri : J〈Ri, idx , β〉Kni−1 = ni. The second loop, at lines 13–16,
generalizes S to be more widely applicable, while still replaying the path p.



Definition 9 (Replaying Paths). Let p = n0 →R1
. . . →Rk nk be a path in

a solution graph, consisting of a sequence of k edges labeled with rules R1, . . . , Rk.
An execution plan S replays the path p if S is a sequence of k steps [〈R1, idx 1, β1〉,
. . . , 〈Rk, idxk, βk〉], one for each edge in p, and there is an index idx ∈ refs(n0)
such that nk = replace(n0, idx , JSKref (n0, idx )).

To illustrate, consider applying FindPlan to the path (= (+ x 1 -1) 5) →B

(= (+ 0 x) 5)→A (= x 5) in Figure 2a. The Solve procedure computes this path
p by firing B with idx = [1], βB = {[] 7→ [], [1] 7→ [2], [2] 7→ [3]}, and A with
idx = [1], βA = {[] 7→ [], [1] 7→ [1]]}. As a result, the loop at lines 10-12 executes
twice to produce the plan S = [〈B, idx , βB〉, 〈A, idx , βA〉]. The plan S replays p
exactly: it describes a tactic for applying the axioms B◦A to a term whose first
child has two opposite constants as its second and third children. The loop at
lines 13-16 generalizes S to produce the plan in Figure 2b. This plan replays p
but applies to any term with opposite constants as its second and third children.

Definition 10 (Soundness). Let f be a partial function from terms to terms.
We say that f is sound with respect to a set of rules R if for every term t0,
f(t0) = ⊥ or there is a finite sequence of terms t1, . . . , tk such that f(t0) = tk
and ∀i ∈ {1, . . . , k}.∃R ∈ R. ti ∈ fire(R, ti−1).

Definition 11 (Shortcuts). A path p is a shortcut path in a solution graph
G if p contains more than one edge and p is a subpath of a shortest path from
G’s source to one of its sinks.

Theorem 1. Let T be a set of terms, Reduced a predicate over terms, and A a
set of rules. If every term in T can be Reduced using A, then FindSpecs(T,A)
terminates and produces a set S of plan and term triples with the following prop-
erties: (1) for every 〈S, src, tgt〉 ∈ S, JSK is sound with respect to A, and (2)
for every shortcut path p from src to tgt in a solution graph for t ∈ T , A, and
Reduced, there is a triple 〈S, src, tgt〉 ∈ S such that S replays p.

4.2 Rule Synthesis

RuleSy synthesizes tactics by searching for well-formed programs that sat-
isfy specifications 〈S, src, tgt〉 produced by FindSpecs. This search is a form of
syntax-guided synthesis [13]: it draws candidate programs from a given syntactic
space, and uses an automatic verifier to check if a chosen candidate satisfies the
specification. We illustrate the challenges of classic syntax-guided synthesis for
rule programs; show how our best-implements query addresses them; and present
the FindRules algorithm for sound, complete, and efficient solving of this query.

Classic Synthesis for Rule Programs. In our setting, the classic synthesis query
takes the form ∃R.∀t.JRKt = JSKt, where R is a well-formed program and S is an
execution plan. Existing tools [13,11,12] cannot solve this query soundly because
it involves verifying candidate programs over terms of unbounded size.

But even if we weaken the soundness guarantee to functional correctness
over bounded inputs, these tools can fail to find useful rules because the classic



1: function FindRules(S: plan, src, tgt: terms, k̄: ints)
2: idx ← replayIndex(S, src, tgt)
3: s, t← ref (src, idx), JSKref (src, idx)
4: p0 ← termToPattern(s) . Most refined pattern that matches s

5: R ←
⋃
p0vp

FindRule(p, S, s, t, k̄)

6: return R . Rules that best implement S for 〈src, tgt〉

7: function FindRule(p: pattern, S: plan, s,t: terms, k̄: ints) .JpKs∧t=JSKs
8: ??c ←WellFormedConstraintHole(p, k̄)
9: C ← (Condition (Pattern p) (Constraint ??c)) .Condition sketch

10: ??a ←WellFormedCommandHoles(p, k̄)

11: A← (Action ??a) . Action sketch with a sequence ??a of holes

12: T← {t | JpKt} . Symbolic representation of all terms that satisfy p

13: c← CEGIS(JCKs ∧ (∀τ ∈ T.JCKτ ⇐⇒ JSKτ 6= ⊥))
14: a← CEGIS(JAKs = t ∧ (∀τ ∈ T.JSKτ 6= ⊥ =⇒ JAKτ = JSKτ))
15: return {(Rule c a) | c 6= ⊥ ∧ a 6= ⊥}

Fig. 8: FindRules takes as input a bound k̄ on program size and an execution
plan S that replays a path from src to tgt . Given these inputs, it synthesizes all
rule programs of size k̄ that best implement S with respect to src and tgt .

query is overly strict for our purposes. To see why, consider the specification
〈S, src, tgt〉 where S is [〈A, [1], β0〉, 〈A, [2], β0〉], src is (+ (+ 0x) (+ 0 y)), tgt is
(+x y), A is the additive identity axiom (Figure 1a), and β0 is the identity bind-
ing. The plan S specifies a general tactic for transforming a term of the form
(op (+ 0 e0) (+ 0 e1)) to the term (op e0 e1), where op is any binary operator in
our algebra DSL. Such a tactic cannot be expressed as a well-formed program
(Definition 5). But many useful specializations of this tactic are expressible, e.g.:

(Rule (Condition
(Pattern (Term + (Term + (ConstTerm) _) (Term + (ConstTerm) _) etc))
(Constraint (And (Eq? (Ref 1 1) 0) (Eq? (Ref 2 1) 0))))

(Action (Replace (Ref 1) (Ref 1 2)) (Replace (Ref 2) (Ref 2 2))))

Since we aim to generate useful tactics for domain model optimization, an ideal
synthesis query for RuleSy would admit many such specialized yet widely ap-
plicable implementations of S.

The Best-Implements Synthesis Query. To address the challenges of classic syn-
thesis, we reformulate the synthesis task for RuleSy as follows: given 〈S, src,
tgt〉, find all rules R that fire on src to produce tgt , that are sound with respect
to S, and that capture a locally maximal subset of the behaviors specified by
S. We say that such rules best implement S for 〈src, tgt〉 (Definition 12), and
we search for them with the FindRules algorithm (Figure 8), which is a sound
and complete synthesis procedure for the best-implements query (Theorem 2).

Definition 12 (Best Implementation). Let S be an execution plan that re-
plays a path from a term src to a term tgt. A well-formed rule R best implements
S for 〈src, tgt〉 if tgt ∈ fire(R, src) and ∀t.Jpattern(R)Kt =⇒ JRKt = JSKt.

Sound and Complete Verification. Verifying that a program R best implements
a plan S involves checking that R produces the same output as S on all terms t
accepted by R’s pattern. The verification task is therefore to decide the validity of
the formula ∀t.Jpattern(R)Kt =⇒ JRKt = JSKt. We do so by observing [17] that



this formula has a small model property when R is well-formed (Definition 5):
if the formula is valid on a carefully constructed finite set of terms T, then it is
valid on all terms. At a high level, T consists of terms that satisfy R’s pattern in a
representative fashion. For example, T = {x} for the pattern (VarTerm) because
all terms that satisfy (VarTerm) are isomorphic to the variable x up to a renaming.
Encoding the set T symbolically (rather than explicitly) enables FindRules to
discharge its verification task efficiently with an off-the-shelf SMT solver [18].

Efficient Search. FindRules accelerates synthesis by exploiting the observa-
tion that a best implementation of 〈S, src, tgt〉 must fire on src to produce tgt ,
which has two key consequences. First, because S replays a path from src to tgt
(Theorem 1), src contains a subterm s at an index idx such that t = JSKs and
tgt = replace(src, idx , t) (lines 2-3). Any rule R that outputs t on s will therefore
fire on src to produce tgt , so it sufficient to look for rules R that transform s to t,
without having to reason about the semantics of fire. Second, if a rule accepts s,
its pattern must be refined (Definition 13) by the most specific pattern p0 (line 4)
that accepts s. To construct p0, we replace each literal in s with (ConstTerm),
variable with (VarTerm), and operator o with the tokens Term o. Since p0 refines
finitely many patterns p, we can enumerate all of them (line 5). Once p is fixed
through enumeration, FindRule can efficiently search for a best implementation
R with that pattern, by using an off-the-shelf synthesizer [12] to perform two
independent searches for R’s condition (line 13) and action (line 14). These two
searches explore an exponentially smaller candidate space than a single search
for the condition and action [17], without missing any correct rules (Theorem 2).

Definition 13 (Pattern Refinement). A condition pattern p1 refines a pat-
tern p2 if p1 v p2, where v is defined as follows: p v p; p v _; (ConstTerm)

v (BaseTerm); (VarTerm) v (BaseTerm); (Term o p1 . . . pk) v (Term o q1 . . . qk) if
pi v qi for all i ∈ [1..k]; and (Term o p1 . . . pn) v (Term o q1 . . . qk etc) if n ≥ k
and pi v qi for all i ∈ [1..k].

Theorem 2. Let S be an execution plan that replays a shortcut path from src
to tgt, and k̄ a bound on the size of rule programs. FindRules(S, src, tgt , k̄)
returns a set of rules R with the following properties: (1) every R ∈ R best im-
plements S for 〈src, tgt〉; (2) R includes a sound rule R of size k̄ if one exists;
and (3) for every pattern p that refines or is refined by R’s pattern, R includes
a sound rule with pattern p and size k̄ if one exists.

4.3 Rule Set Optimization

After synthesizing the tactics T for the examples T and axioms A, RuleSy ap-
plies discrete optimization to find a subset of A∪T that minimizes the objective
function f . We formulate this optimization problem in a way that guarantees
termination. In particular, our Optimize algorithm (Figure 9) returns a set of
rules R ⊆ A ∪ T that can solve each example in T and that minimize f over
all shortest solution graphs for T and A∪ T (Theorem 3). Restricting the opti-
mization to shortest solutions enables us to decide whether an arbitrary rule set



1: function Optimize(T : set of terms, A,T : set of rules, f : objective)
2: GA∪T ← {}
3: for t ∈ T such that ¬Reduced(t) do
4: 〈N,EA〉 ← Solve(t,A) . Solve with axioms

5: ET ←
⋃
R∈T

⋃
s,t∈N{〈s, t〉 | t ∈ fire(R, s)} . Tactic edges

6: GA∪T ← GA∪T ∪ {〈N,EA ∪ ET 〉}
7: f∅ ← λR.G. if 〈∅, ∅〉 ∈ G then return ∞ else return f(R,G)
8: return min

R⊆A∪T
f∅(R, {Restrict(G,R) |G ∈ GA∪T })

9: function Restrict(〈N,E〉: solution graph, R: set of rules)
10: t← source of the graph 〈N,E〉
11: ER ← {〈src, tgt〉R ∈ E |R ∈ R} . Edges with labels in R
12: paths ←

⋃
t̂∈N∧Reduced(t̂) allPaths(t, t̂, 〈N,ER〉)

13: E ←
⋃
p∈paths pathEdges(p)

14: N ← {n | ∃e ∈ E . source(e) = n ∨ target(e) = n}
15: return 〈N,E〉 . Solution graph for t and R or 〈∅, ∅〉

Fig. 9: Optimize takes as input a set of terms T , axioms A for reducing T ,
tactics T synthesized from A and T using FindRules and FindSpecs, and an
objective function f . The output is a set of rules R ⊆ A ∪ T that minimizes f .

R ⊆ A ∪ T can solve an example t ∈ T without having to invoke Solve(t,R),
which may not terminate for an arbitrary term t and rule set R in our DSL.

The Optimize procedure works in three steps. First, for each example term
t ∈ T , lines 4-5 construct a solution graph 〈N,EA ∪ ET 〉 that contains shortest
solutions for t and all subsets of A ∪ T . Next, line 7 creates a function f∅ that
takes as input a set of rulesR and a set of graphs G, and produces∞ if G contains
the empty graph (indicating that R cannot solve some term in T ) and f(R,G)
otherwise. Finally, line 8 searches for R ⊆ A ∪ T that minimizes f over GA∪T .
This search relies on the procedure Restrict(G,R) to extract from G a solution
graph for t ∈ T andR if one is included, or the empty graph otherwise. For linear
objectives f , the search can be delegated to an optimizing SMT solver [18]. For
other objectives (e.g., Figure 1c), we use a greedy algorithm to find a locally
minimal solution (thus weakening the optimality guarantee in Theorem 3).

Theorem 3. Let T be a set of tactics synthesized by RuleSy for terms T and
axioms A, and let f be a total function from sets of rules and solution graphs to
positive real numbers. Optimize(T,A, T , f) returns a set of rules R ⊆ A∪T that
can solve each term in T , and for all such R′ ⊆ A ∪ T , f(R, {Solve(t,R) | t ∈
T}) ≤ f(R′, {Solve(t,R′) | t ∈ T}).

5 Evaluation

To evaluate RuleSy’s effectiveness at synthesizing domain models, we answer
the following four research questions:

RQ 1. Can RuleSy’s synthesis algorithm recover standard tactics from a text-
book and discover new ones?

RQ 2. Can RuleSy’s optimization algorithm recover textbook domain models
and discover variants of those models that optimize different objectives?



RQ 3. Does RuleSy significantly outperform RuleSynth, a prior tool [15] for
modeling the domain of introductory K-12 algebra?

RQ 4. Can RuleSy support different educational domains?

The first two questions assess the quality of RuleSy’s output by comparing
the synthesized tactics and domain models to a textbook [9] written by domain
experts. The third question evaluates the performance of RuleSy’s algorithms
by comparison to an existing tool for synthesizing tactics and domain models.
The fourth question assesses the generality of our approach. We conducted two
case studies to answer these questions, finding positive answers to each. The
implementation source code and evaluation data are available online [19].

5.1 Case Study with Algebra (RQ 1–3)

We performed three experiments in the domain of K-12 algebra to answer RQ
1–3. Each experiment was executed on an Intel 2nd generation i7 processor with
8 virtual threads. The system was limited to a synthesis timeout of 20 minutes
per mined specification. The details and results are presented below.

Table 1: Example problems (a) and axioms (b) for the algebra case study.

(a) Example problems.

ID Source #
PR RuleSynth [15] 55
PT Chapter 2, Sections

1-4 of Hall et al. [9]
92

(b) Axioms.

ID Name Example
A Additive Identity x+ 0→ x
B Adding Constants 2 + 3→ 5
C Multiplicative Identity 1x→ x
D Multiplying by Zero 0(x+ 2)→ 0
E Multiplying Constants 2 ∗ 3→ 6
F Divisive Identity x

1 → x
G Canceling Fractions 2x

2y →
x
y

H Multiplying Fractions 3
(
2x
4

)
→ (2∗3)x

4
I Factoring 3x+ 4x→ (3 + 4)x
J Distribution (3 + 4)x→ 3x+ 4x
K Expanding Terms x→ 1x
L Expanding Negatives −x→ −1x
M Adding to Both Sides x+−1 = 2→ x+−1 + 1 = 2 + 1
N Dividing Both Sides 3x = 2→ 3x

3 = 2
3

O Multiplying Both Sides x
3 = 2→ 3

(
x
3

)
= 2 ∗ 3

Quality of Synthesized Rules (RQ 1). To evaluate the quality of the rules syn-
thesized by RuleSy, we apply the system to the examples (PT in Table 1a) and
axioms (Table 1b) from a standard algebra textbook [9], and compare system
output (607 tactics) to the tactics from the textbook. Since the book demon-
strates rules on examples rather than explicitly, determining which rules are
shown involves some interpretation. For example, we interpret the transforma-
tion 5x+2−2x = 2x+14−2x→ 3x+2 = 14 as demonstrating two independent
tactics, one for each side of the equation, rather than one tactic with unrelated
subparts. The second column of Table 2 lists all the tactics presented in the
book. We find that RuleSy recovers each of them or a close variation.



In addition to recovering textbook tactics, RuleSy finds interesting varia-
tions on rules commonly taught in algebra class. Figure 10 shows an example,
which isolates a variable from a negated fraction and an addend. This rule com-
poses 9 axioms, demonstrating RuleSy’s ability to discover advanced tactics.

(define MBALNGOHG ; Isolate a variable from a negated fraction and an addend:
(Rule ; (= (+ (− (/ (∗ x . . .) b)) c) e)→ (= (∗ x . . .) (∗ b (− c e)))

(Condition
(Pattern

(Term = (Term + (Term - (Term / (Term * (VarTerm) etc) (BaseTerm)))
(ConstTerm))

_))
(Constraint true))

(Action
(Replace (Ref 1) (Ref 1 1 1 1))
(Replace (Ref 2) (Make * (Ref 1 1 1 2) (Make - (Ref 1 2) (Ref 2)))))))

Fig. 10: A custom algebra tactic discovered by RuleSy.

(define xpq ; Modus ponens: if I � A→ B and I � A, then I � B.
(Rule

(Condition (Pattern (Term known (Term |= (Term → _ _)) (Term |= _) etc))
(Constraint (Eq? (Ref 1 1 1) (Ref 2 1))))

(Action (Replace (Ref) (Cons (Make |= (Ref 1 1 2)) (Ref))))))

Fig. 11: A proof tactic synthesized by RuleSy.

Quality of Synthesized Domain Models (RQ 2). We next evaluate RuleSy’s
ability to recover textbook domain models along with variations that optimize
different objectives. An important part of creating domain models for educa-
tional tools (and curricula in general) is choosing the progression—the sequence
in which different concepts (i.e., rules) should be learned. We use RuleSy and
the objective function shown in Figure 1c to find a progression of optimal do-
main models for the problems (PT in Table 1a) and axioms (Table 1b) in [9],
and we compare this progression to the one in the book.

We create a progression by producing a sequence of domain models for Sec-
tions 1–4 of Chapter 2 in [9]. Every successive model is constrained to be a
superset of the previous model(s): students keep what they learned and use it
in subsequent sections. To generate a domain model Dn for section n, we apply
RuleSy’s optimizer to the exercise problems from section n; the objective func-
tion in Figure 1c with α ∈ {.05, .125, .25}; and all available rules (axioms and
tactics), coupled with the constraint that D1 ∪ . . . ∪Dn−1 ⊆ Dn.

Table 2 shows the resulting progressions of optimal domain models for [9],
along with the rules that are introduced in the corresponding sections. For each
rule presented in a section, the corresponding optimal model for α = .05 contains
either the rule itself or a close variation. Increasing α leads to new domain
models that emphasize rule set complexity over solution efficiency. This result



demonstrates that RuleSy can recover textbook domain models, as well as find
new models that optimize different objectives.

Table 2: A textbook [9] progression and the corresponding optimal domain
models found by RuleSy, using 3 settings of α (Figure 1c). Row i shows the
rules that the ith model adds to the preceding models.

Section Textbook Rules ODM α = 0.05 ODM α = 0.125 ODM α = 0.25
2-1 B, M, N, G, O, M, A, K, L, LNG, NG, NG, OHG, MBA NG, OHG, MBA

BA, HG OHG, IBD, MBA
2-2 L, E LE LNG, LE E, L
2-3 J, IB, KIB, JB E, J, KIB, IB, BMBA E, K, L, J, B, IB I, K, J, B
2-4 LEIBDA, LEIB C, BD, LEIB, MLEI M, C, BD, IBD, M, C, D, LEIB

LEIB, MLEI

Comparison to Prior Work (RQ 3). We compare the performance of RuleSy to
the prior system RuleSynth by applying both tools to the example problems
PR in Table 1a and the axioms in Table 1b. We use the same problems as the
original evaluation of RuleSynth because its algorithms encounter performance
problems on the (larger) textbook problems PT . Given these inputs, RuleSy
synthesizes 144 tactics, which include the 13 rules synthesized by RuleSynth.
Figure 12 graphs the rate of rules produced by each system, which accounts for
the time to mine specifications and synthesize rules for those specifications. Our
system both learns more rules and does so at a faster rate.

RuleSy outperforms RuleSynth thanks to the soundness and complete-
ness of its specification mining and synthesis algorithms. RuleSynth employs a
heuristic four-step procedure for synthesizing tactics: (1) use the axioms to solve
the example problems; (2) extract pairs of input-output terms for all axiom se-
quences that appear in the solutions; (3) heuristically group those pairs into sets
that are likely to be specifying the same tactics; and (4) synthesize a tactic for
each resulting set. This process is neither sound nor complete, so RuleSynth
can produce incorrect tactics and miss tactic specifications found by RuleSy.

To show that RuleSy can efficiently explore spaces of rules to find optimal
domain models, we compare its runtime performance to that of RuleSynth.
Since the two systems use different input languages, we manually transcribed the
13 tactics generated by RuleSynth into our algebra DSL. Given these tactics,
the axioms in Table 1b, and the examples PR, RuleSynth finds an optimal
rule set in 20 seconds, whereas RuleSy takes 14 seconds. As the optimization is
superlinear in the number of rules, we can expect this performance difference to
be magnified on larger rule sets. Figure 13 shows that RuleSy’s optimization
algorithm finds domain models quickly, even on much larger design spaces.

5.2 Case Study with Propositional Logic (RQ 4)

To evaluate the extensibility and generality of RuleSy, we applied it to the
domain of semantic proofs for elementary propositional logic theorems. Many
students have trouble learning how to construct proofs [20], so custom educa-
tional tools could help by teaching a variety of proof strategies.
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Table 3: The axioms [16] used for the logic case study.
ID Name Description
p Contradiction If I � A and I 2 A then I � ⊥
q Branch elimination If I � ⊥ | A then I � A
r And 1 If I � A ∧ then I � A
s And 2 If I 2 A ∧ B then I 2 A | I 2 B
t Or 1 If I � A ∨ B then I � A | I � B
u Or 2 If I 2 A ∨ then I 2 A
v Not 1 If I � ¬A then I 2 A
w Not 2 If I 2 ¬A then I � A
x Implication 1 If I � A→ B, then I 2 A | I � B
y Implication 2 If I 2 A→ B, then I � A
z Implication 3 If I 2 A→ B, then I 2 B

We instantiated RuleSy with a DSL for expressing semantic proofs. The
DSL represents problem states as proof trees, consisting of a set of branches,
each containing a set of facts that have been proven so far. The DSL encodes
this proof structure with commutative operators branch and known. The problem-
solving task in this domain is to establish the validity of a propositional formula,
such as (p ∧ q)→ (p→ q), by assuming a falsifying interpretation and applying
proof rules to arrive at a contradiction in every branch. Tactics apply multiple
proof steps (i.e., axioms) at once.

We applied this instantiation of RuleSy to the axioms (Table 3) and proof
exercises (3 in total) from a textbook [16]. The system synthesized 85 rules in 72
minutes. The resulting rules includes interesting general proof rules for each of
the exercises. For example, given (p∧ (p→ q))→ q, RuleSy mines and synthe-
sizes the modus ponens tactic shown in Figure 11. These results show RuleSy’s
applicability and effectiveness extend beyond the domain of K-12 algebra.

6 Related Work

Automated Rule Learning. Automated rule learning is a well-studied problem in
Artificial Intelligence and Machine Learning. RuleSy is most closely related to



rule learning approaches in discrete planning domains, such as cognitive architec-
tures [21]. Its learning of tactics from axioms is similar to chunking in SOAR [22],
knowledge compilation in ACT [23], and macro-learning from AI planning [24].
But unlike these systems, RuleSy can learn rules for transforming problems
represented as trees, and express objective criteria over rules and solutions.

Inductive Logic Programming. Within educational technology, researchers have
investigated automated learning of rules and domain models for intelligent tu-
tors [25]. Previous efforts have focused on applying inductive logic programming
to learn a domain model from a set of expert solution traces [26,27,28,29,30].
RuleSy, in contrast, uses a small set of axioms and example problems to syn-
thesize an exhaustive set of sound tactics, and it searches the axioms and tactics
for a model that optimizes a desired objective.

Program Synthesis. Prior educational applications of program synthesis and
automated search include problem and solution generation [31,1], hint and feed-
back generation [32,33,34], and checking of student proofs [35]. RuleSy solves a
different problem: generating condition-action rules and domain models. General
approaches to programming-by-example [36,37] have investigated the problem
of learning useful programs from a small number of input-output examples, with
no general soundness guarantees. RuleSy, in contrast, uses axioms to verify
that the synthesized programs are sound for all inputs, relying on examples only
to bias the search toward useful programs (i.e., tactics that shorten solutions).

Term Rewrite Systems. RuleSy helps automate the construction of rule-based
domain models, which are related to term rewrite systems [38]. Our work can be
seen as an approach for learning rewrite rules, and selecting a cheapest rewrite
system that terminates on a given finite set of terms. RuleSy terms are a special
case of recursive data types, which have been extensively studied in the context
of automated reasoning [39,40,41]. Our rule language is designed to support effec-
tive automated reasoning by reduction to the quantifier-free theory of bitvectors.

7 Conclusion

This paper presented RuleSy, a framework for computer-aided development of
domain models expressed as condition-action rules. RuleSy is based on new
algorithms for mining specifications of tactic rules from examples and axioms,
synthesizing sound implementations of those specifications, and selecting an opti-
mal domain model from a set of axioms and tactics. Thanks to these algorithms,
RuleSy efficiently recovers textbook tactic rules and models for K-12 algebra,
discovers new ones, and generalizes to other domains. As the need for tools to
support personalized education grows, RuleSy can help tool developers rapidly
create domain models that target individual students’ educational objectives.

Acknowledgements. This research was supported in part by NSF CCF-1651225,
1639576, and 1546510; Oak Foundation 16-644; and Hewlett Foundation.



References
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