
Visualizing Progressions for Education and Game Design

Eric Butler, Rahul Banerjee
Center for Game Science

Department of Computer Science & Engineering, University of Washington
{edbutler,banerjee}@cs.washington.edu

ABSTRACT
Progression design is a critical part of designing games or ed-
ucational content. Currently, systems to visualize the content
of a progression are limited and do not help designers an-
swer questions important to the design process. These ques-
tions include comparing two progressions to understand the
relative order in which concepts are introduced or how com-
plexity changes throughout the progression. We present an
interactive visualization system that allows designers to com-
pare two different progressions, using multiple views and in-
teraction techniques that aim to help designers answer these
questions. We evaluate our tool through informal anecdotes,
discussing insights that were found on progression data for
actively developed games.

Author Keywords
data visualization; game design;

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
A critical component of the design of educational or game
experiences is crafting a coherent and effective sequence of
content, called the progression. The progressions of skill-
based games or educational curricula often aim to teach the
player or student a series of different concepts. The design
of progressions is a time-consuming, iterative process, where
designers must carefully balance the ordering of concepts and
how concepts are combined. More recently, designers and
researchers have attempted to create systems that can pro-
duce such content automatically (e.g., [1]). Understanding
the structure of these progressions and their properties is cru-
cial for effective design of either hand-crafted progressions
or progression-generating algorithms, and visualization tools
can aid the designer in this process.

One important task is comparing the quality of two differ-
ent progressions. Designs may be an in-development version
of a game to a previous iteration, and deciding between two

Copyright Eric Butler and Rahul Banerjee, 2014.

possible changes. In research settings, when developing sys-
tems to automatically generate progressions, it can be ben-
eficial, for example, to compare the output of the algorithm
to a human-designed progression. While there has been a lot
of research into how to visualize player data [25], our task
is slightly different: we are focused on looking at the static
design space of the game, without any player data. There
are several reasons designers may wish to analyze the design
space of their game independent of player data. Often, early
in the design process, developers do not have access to player
data, or such data is too expensive to gather. There is value
in getting “first impressions” of a design before putting it in
front of players. Likewise, when experimenting with auto-
matic progression generation techniques, researchers should
be able to have some understanding of their systems without
first having to collect player data.

However, there are few examples of such visualization sys-
tems, and such systems face several challenges. We are
concerned specifically with understanding the progression of
concepts that a player or student encounters in a skill-based
game or piece of educational content. Thus, progressions
are a sequence of stages (e.g., problems, puzzles, levels,
study units), where each stage covers a different set of con-
cepts. Both the number of concepts and number of stages
may be high, in the dozens. So a progression is a sequence
of high-dimensional data, presenting challenges in visualiza-
tion. There are several activities we might want a useful pro-
gression comparison tool to support:

• What is the order concepts are introduced in two different
progressions?
• How are particular concepts used in combination?
• How does the complexity change over the progression?
• How much of the “design space” is covered by one pro-

gression but not another; are there concepts or combina-
tions that one of the progressions neglects?

Little work exists in visualizing this specific domain. But-
ler et al. visualize progressions as a table with stages on one
axis and columns on the other [6]. This visual encoding does
not support answering all the questions we care to support,
especially when the number of concepts or stages are large.
A good demonstration of how the table visualization fails to
scale to a large number of stages/concepts can be found in
Piotr Bugno’s detailed outline of the story and puzzle pro-
gressions for Portal 21. Though the ordering of concepts is
clear, how they are combined is not, and viewing two of these

1http://www.piotrbugno.com/2012/06/
portal-2-timelines/

1

http://www.piotrbugno.com/2012/06/portal-2-timelines/
http://www.piotrbugno.com/2012/06/portal-2-timelines/


charts together may yield little immediate insight as to their
differences.

In this work we present a novel visualization system for com-
paring two different progressions to each other. We evaluate
its usefulness through informal, anecdotal case studies using
datasets of progressions from the game Refraction, an edu-
cational math game developed by our group. We discuss in-
sights provided by this visualization tool that are difficult to
notice without it.

RELATED WORK
The need to visualize sequences of values occurs in a wide
range of other domains, such as stock market data or med-
ical health records. There exist several techniques for visu-
alizing scalar values that vary over time, like line and bar
charts [22]. When comparing multiple scalar values over
time, stacked area charts and their variants work well [12].
However, with higher-dimensional data (as ours is), effective
visualizations must be created based on the semantics of the
data. In domains ranging from personal histories [21] to treat-
ment plans [15], such visualizations have been designed by
hand, based on the specifics of the domain.

Visualizing high-dimensional data is difficult, because most
display surfaces are two-dimensional. The use of 3D displays
and/or animation can add at most two dimensions, but encod-
ing the remaining dimensions in a visually perceptible way
is challenging. Several encodings for such data have been
explored. Some try to show all dimensions in the visualiza-
tion. The simplest method is to plot all values in a table,
which allows the sequential nature of the data to be clearly
shown. However, some questions cannot be easily answered
with tables, so we wish to supplement this view with other
representations. Multiple surveys on visualization of multi-
dimensional data have been done [26, 5], while others survey
visualization methods for time-dependent data [18]. Chernoff
faces [7] attempt to encode several dimensions using parts of
the human face. It and related techniques, in addition to dif-
ficulty with accurate perception, do not scale to a large num-
ber of dimensions. Parallel coordinates [13] plot the different
dimensions on a set of parallel lines, using lines to connect
particular datapoints across the dimensions. However, par-
allel coordinates do not allow for the sequence to be easily
represented with position encodings. Another approach is to
use dimensionality reduction techniques [11], sacrificing de-
tail to increase interpretability. Linear methods for doing this
include Principal Component Analysis (PCA) [10], Random
Projections [4], etc., while non-linear methods include Ko-
honen’s Self-Organizing Maps (SOM) [14], and Multidimen-
sional scaling (MDS) [16]. We use MDS in our tool, though
other dimensionality reduction techniques could be explored
in future work.

A related but distinct visualization problem is that of show-
ing player data. Current visualization systems geared towards
helping game developers with the design process mainly tar-
get visualizing player data. A recent survey describes several
such systems [25]. Our system, in contrast, deals with data of
a progression design space itself. Sequences of player actions
actually have a very similar structure to progressions: a player

Figure 1: A stage of Refraction, the game from which most of
our datasets are drawn. We continue to develop new progres-
sions for the game, hence the need for design tools. Most of
the concepts in Refraction describe the various mathematical
or spatial challenges in each puzzle.

travels through a high-dimensional state space, and several
systems aim to visualize this traversal in a 2D representa-
tion. Researchers have found success using SOM (e.g., [9,
23]), MDS (e.g., [2]), or other layout techniques (e.g., [24]).
However, one of our design requirements is to be able to drill
down deeply into the set of concepts, for example, by looking
at the ordering of concepts throughout the course of the pro-
gression. While we can use some of these techniques for our
problem domain, existing systems for looking at player data
do not cover these use cases.

SYSTEM DESCRIPTION

Data Format
Here, we describe our representation of progression data,
which are a sequence of stages and concepts associated
with them. Our system compares two progressions of a
particular game. The data provides a set of concepts,
C = {c1, . . . , cm}, which represent various skills that ap-
pear in the game. A progression is a sequence of stages
s1, . . . , sn, each stage si described by a feature vector si =
〈wi1, wi2, . . . , wim〉 ∈ Rm, where wij describes “to what de-
gree” or “how much of” concept cj appears in stage si.

We assume that the set C is semantically meaningful, such
that differences in “concept space” correspond to differences
in how players will experience the game. In particular, we
assume that the Euclidean norm of the difference between
two stages captures some useful aspect of how different two
stages are with regards to their contents. The designer must
produce such a set to use the visualization system.

Refraction
We first give a brief description of the particular game from
which most of our examples are drawn, and use it to illustrate
concrete examples of progression concepts. Refraction is

2



an educational puzzle game involving bending, splitting and
combining lasers with fractional values. It combines mathe-
matical and spatial reasoning challenges. A sample puzzle is
shown in Figure 1. Much of our research work involves or re-
quires creating different progressions (both human-made and
computer-generated) for Refraction and other games, which
is a primary reason tools to compare progressions would be
useful (e.g., [6, 19, 20, 3, 17]).

Concepts in the game describe the various mathemati-
cal and spatial challenges of each puzzle. For exam-
ple, the “num splitter” concept describes how many
splitter pieces, pieces that split lasers into equal fractional
parts, must be used to solve the puzzle. The concept
“source power fraction” describes whether source
pieces, the pieces from which the lasers originate, emit lasers
with fractional values or integer values. The datasets have two
alternative concept sets; one is a full set of approximately 60
binary concepts, and the other is a set where those 60 con-
cepts are collapsed into around 15 integer-valued categories.
Other games have their own concept sets specific to their me-
chanics and rules.

Interface
Our system provides three different views of progression
data, and interactive controls for manipulating these views.

The grid is a table with concepts mapped to rows and stages
mapped to columns. The cell for a particular stage and con-
cept represents how much that concept is used in that stage
(higher counts map to more saturated color). Figure 2 shows
grid views for concept progressions from two different games
(Refraction and Portal 2). When viewing the grid, our system
lets the user sort the rows (concepts) according to their order
of appearance in the progression. Thus, the concept intro-
duced first in the progression is on the top row, and the one
introduced last is assigned the last row. The rows can also be
ordered alphabetically (by concept name), or they can simply
reflect the ordering in the data source.

The projection view shows MDS projections for progres-
sions, computed using the SMACOF (Scaling by Majorizing
a Complicated Function) method [8]. Feature vectors from
each stage are projected into 2 dimensions, which are mapped
to position. Every stage is rendered as a node, and nodes cor-
responding to adjacent stages are connected via edges. Mul-
tiple progressions are drawn in the same 2D region, rendered
with transparency to mitigate occlusion caused by overlaps.

The user can also select a particular set of concepts and “drill
down” to see how their occurrences vary precisely over vari-
ous stages by selecting them in the “Filter To:” control. When
one or more concepts are selected in the filter, our system
shows bar charts, one chart per concept. Concept occurrence
is mapped to bar height, while the horizontal axis represents
different stages. When no concepts are selected (or the “Clear
Filters” button is clicked), the bar charts are hidden and the
grid view is shown.

Brushing is supported inside all views by clicking and drag-
ging to specify a rectangular region, which selects all ele-
ments inside its extents. Selection changes an element’s color

(a) Portal 2

(b) Refraction

Figure 2: Concept progressions for (a) Portal 2 and (b) Re-
fraction displayed as grids.

to red. Linking ensures that brushing inside the grid, bar chart
or projection view automatically selects the corresponding el-
ements in the other visible views.

Figure 3 shows a screenshot of our system being used to com-
pare two progressions for Refraction. On the left are sorting
controls (used for ordering the rows in the bar chart), and fil-
ters below (to select particular concepts for inspection). Here,
two concepts (“num bender” and “num splitter”) are
selected. In the center are bar charts showing the concept oc-
curence counts for the selected concepts (one set of bar charts
per progression). On the right, we see the MDS projection
for both progressions, with some nodes selected via brush-
ing, and corresponding nodes in the bar charts selected via
linking.

DISCUSSION
In this section we discuss anecdotes of insights made possible
through use of this tool as well as limitations of the system.

Recent research efforts in our group have attempted to create
progressions (for games such as Refraction) automatically.
One goal of these algorithms was to replicate the success
of the human-designed progressions, and one approach is to
try to create progressions with the same basic structure as

3



Figure 3: A screenshot of our system’s interface, showing its filtering, brushing and linking capabilities. Here, on the left is a
detailed view of two particular concepts for each progression, while the right shows the MDS projection of both progressions
onto a 2D plane.

human-designed ones. When creating these algorithms, the
best tools we had were manual inspection by playing through
the game or looking at tables of computed features. How-
ever, when a computer-generated and a human-designed pro-
gression were compared in our tool, certain strong differences
were immediately apparent. Figure 4 shows the MDS projec-
tion of two progressions: blue is human, orange is computer.
It is clear that the successive stages in the computer progres-
sion are very close in “concept space,” whereas the human
progression moves much more chaotically through the space.
This leads us to infer that the computer-created progression
does not have enough variance from one puzzle to the next.
Another interesting feature that is immediately obvious is that
the computer progression eventually gets stuck and gives es-
sentially very similar puzzles 20 times in a row.

Another measure on which we want to compare the progres-
sions is ordering of concepts. The tool allows us to easily sort
one progression by the ordering of another, in order to make
differences readily apparent. This is illustrated in Figure 5,
where we compare the same progressions by ordering. Here,
we use a very detailed breakdown on the concept space. We
immediately notice several concepts that appear very early
in the computer-generated progression but very late in the
human-generated progression. Additionally, we can clearly
see how the games diverge in the later half of the progres-

sion. The sets of concepts introduced in the second half of
each progression are nearly disjoint.

Limitations
One significant limitation in the system is that it relies on the
concept set to be semantically meaningful so that operations
such as taking the Euclidean distance between stages is sen-
sible. This is obviously a tall order for game designers to sat-
isfy before they can use the tool, as it is not clear which con-
cepts actually affect player experience without testing. One
possible remedy for this is to explore unsupervised machine
learning techniques to deduce more meaningful concept di-
mensions, perhaps by clustering or dimensionality reduction
techniques. If this tool were being used in a later stage of
development when player data from user tests are available,
that could be used in such an analysis by trying to learn which
particular concepts have measurable impact on player expe-
rience. Another approach would be to allow the designer to
interactively organize and categorize concepts while explor-
ing with the tool, rather than beforehand.

Another major problem is the lack of a significant number of
datasets for this domain. Though we believe this will change
in the future, currently, explicitly creating data representa-
tions of progressions is rare and limited primarily to a small
set of research groups. While we can (and did) manually

4



Figure 4: A human-crafted progression (blue) and one of our
attempts at an automatically-generated progression (orange).
The MDS projection clearly illustrates some of the qualitative
differences between the two progressions.

create datasets for existing games, games very rarely have
multiple progressions in final versions, as multiple progres-
sions often only appear during iteration in the development
process. On the other hand, while educational domains very
frequently have wildly different progressions for a particu-
lar domain (e.g., high-school algebra), formal representations
of these progressions for use in visualization are very rare.
Therefore, though we believe these activities can be gener-
ally applicable to a wide range of games or educational do-
mains, it is difficult to substantiate such a claim without other
datasets on which to evaluate the tool’s generality.

A minor limitation of our system is that it currently does not
scale gracefully to extremely long progressions. While pro-
gressions with around 100 stages display quickly, computing
MDS on significantly longer progressions takes more time,
increasing the latency before being able to interact.

CONCLUSION
We have presented a system that aims to help designers com-
pare and answer important design questions about progres-
sions during the design process. The tool supports sev-
eral different encodings of progression data such as tables
and MDS projections, supporting answering questions about
things such as the ordering of introduction of concepts or how
two different progressions move through the design space.
Anecdotal evidence suggests that this tool can be useful in
providing insight to designers.

There are several avenues of future work, in addition to
overcoming previously mentioned limitations. We only used

Figure 5: Comparing ordering of concepts between human-
crafted (blue, on left) and computer-generated (orange, on
right) progressions. The concepts are sorted by introduction
order of the left progression, making differences in ordering
between the two datasets apparent. Note that while typically
this grid view uses hue to show quantitative values for each
concept, this particular concept set is all binary. This screen-
shot is cropped for display purposes; the tool shows it slightly
differently.

one dimensionality-reduction technique; others should be ex-
plored to find more effective ones. Though our system is
designed for use where player data is not available, it could
be improved in cases where such data does exist by integrat-
ing visualizations of such data into the tool. For example,
the tool could allow designers to drill down into a particular
stage and view statistics on how players performed on that
stage, or aggregate statistics about each stage could be dis-
played alongside the table. Though this system was designed
for a research setting, industry developers could likely ben-
efit from such a tool, and a more thorough evaluation of the
requirements for such a tool could be conducted. This sys-
tem supports linear sequences; however, several professional
or research games or educational systems use non-linear pro-
gression structures, for example by choosing the next math
problem based on performance of the student. Techniques to
better understand these structures could be explored.

5



REFERENCES
1. Andersen, E., Gulwani, S., and Popović, Z. A

trace-based framework for analyzing and synthesizing
educational progressions. In CHI (2013).

2. Andersen, E., Liu, Y.-E., Apter, E., Boucher-Genesse, F.,
and Popović, Z. Gameplay analysis through state
projection. In FDG (2010).

3. Andersen, E., O’Rourke, E., Liu, Y.-E., Snider, R.,
Lowdermilk, J., Truong, D., Cooper, S., and Popović, Z.
The impact of tutorials on games of varying complexity.
In CHI (2012).

4. Baraniuk, R. G., and Wakin, M. B. Random projections
of smooth manifolds. Foundations of computational
mathematics 9, 1 (2009), 51–77.

5. Buja, A., Cook, D., and Swayne, D. F. Interactive
high-dimensional data visualization. Journal of
Computational and Graphical Statistics 5, 1 (1996),
78–99.

6. Butler, E., Smith, A. M., Liu, Y.-E., and Popović, Z. A
Mixed-Initiative Tool for Designing Level Progressions
in Games. In UIST (2013).

7. Chernoff, H. The use of faces to represent points in
k-dimensional space graphically. Journal of the
American Statistical Association 68, 342 (1973),
361–368.

8. De Leeuw, J., and Mair, P. Multidimensional scaling
using majorization: SMACOF in R.

9. Drachen, A., Canossa, A., and Yannakakis, G. N. Player
modeling using self-organization in tomb raider:
Underworld. In Computational Intelligence and Games,
2009. CIG 2009. IEEE Symposium on, IEEE (2009),
1–8.

10. Dunteman, G. H. Principal components analysis.
No. 69. Sage, 1989.

11. Fodor, I. K. A survey of dimension reduction
techniques, 2002.

12. Havre, S., Hetzler, E., Whitney, P., and Nowell, L.
Themeriver: Visualizing thematic changes in large
document collections. Visualization and Computer
Graphics, IEEE Transactions on 8, 1 (2002), 9–20.

13. Inselberg, A., and Dimsdale, B. Parallel coordinates. In
Human-Machine Interactive Systems. Springer, 1991.

14. Kohonen, T. Self-organizing maps. Springer, 2001.

15. Kosara, R., and Miksch, S. Metaphors of movement: a
visualization and user interface for time-oriented,
skeletal plans. Artificial intelligence in medicine 22, 2
(2001), 111–131.

16. Kruskal, J. B., and Wish, M. Multidimensional scaling.
Sage, 1978.

17. Mandel, T., Liu, Y.-E., Levine, S., Brunskill, E., and
Popovic, Z. Offline policy evaluation across
representations with applications to educational games.

18. Mullër, W., and Schumann, H. Visualization methods for
time-dependent data-an overview. In Simulation
Conference, 2003. Proceedings of the 2003 Winter,
vol. 1, IEEE (2003), 737–745.

19. O’Rourke, E., Butler, E., Liu, Y.-E., Ballweber, C., and
Popovic, Z. The effects of age on player behavior in
educational games. Foundations of Digital Games, FDG
13 (2013).

20. O’Rourke, E., Haimovitz, K., Ballwebber, C., Dweck,
C. S., and Popovic, Z. Brain points: A growth mindset
incentive structure boosts persistence in an educational
game.

21. Plaisant, C., Milash, B., Rose, A., Widoff, S., and
Shneiderman, B. Lifelines: visualizing personal
histories. In Proceedings of the SIGCHI conference on
Human factors in computing systems, ACM (1996),
221–227.

22. Playfair, W. Playfair’s commercial and political atlas
and statistical breviary. Cambridge University Press,
2005.

23. Thawonmas, R., Kurashige, M., Iizuka, K., and
Kantardzic, M. Clustering of online game users based on
their trails using self-organizing map. In Entertainment
Computing-ICEC 2006. Springer, 2006, 366–369.

24. Wallner, G., and Kriglstein, S. A spatiotemporal
visualization approach for the analysis of gameplay data.
In Proceedings of the 2012 ACM annual conference on
Human Factors in Computing Systems, ACM (2012),
1115–1124.

25. Wallner, G., and Kriglstein, S. Visualization-based
analysis of gameplay data–a review of literature.
Entertainment Computing 4, 3 (2013), 143–155.

26. Wong, P. C., and Bergeron, R. D. 30 years of
multidimensional multivariate visualization. In Scientific
Visualization (1994), 3–33.

6


	Introduction
	Related Work
	System Description
	Data Format
	Refraction
	Interface

	Discussion
	Limitations

	Conclusion
	REFERENCES 

