
A Framework for Parameterized Design of Rule
Systems Applied to Algebra

Eric Butler, Emina Torlak, and Zoran Popović

Department of Computer Science and Engineering, University of Washington,
Seattle, WA 98195 USA

{edbutler,emina,zoran}@cs.washington.edu

Abstract. Creating a domain model (expert behavior) is a key compo-
nent of every tutoring system. Whether the process is manual or semi-
automatic, the construction of the rules of expert behavior requires sub-
stantial effort. Once finished, the domain model is treated as a fixed
entity that does not change based on scope, sequence modifications, or
student learning parameters. In this paper, we propose a framework for
automatic learning and optimization of the domain model (expressed as
condition-action rules) based on designer-provided learning criteria that
include aspects of scope, progression sequence, efficiency of learned so-
lutions, and working memory capacity. We present a proof-of-concept
implementation based on program synthesis for the domain of linear al-
gebra, and we evaluate this framework through preliminary illustrative
scenarios of objective learning criteria.

Keywords: Intelligent Tutoring Systems, Program Synthesis, Automated
Domain Modeling, Artificial Intelligence

1 Introduction

Creating an appropriate domain model (i.e., a set of rules capturing expert
behavior) is an integral part of designing intelligent tutors. In general, the domain
rules are considered intrinsically rigid and tied to the content to be learned,
while the student model accounts for variability and specialization. Prior work
on creating domain models relies heavily on expert modeling. This affects the
expense of tutor development, estimated at 200-300 hours per hour of content [9].
There has been some work on learning domain rules semi-automatically in the
context of Intelligent Tutors [4, 7]. Both manual and semi-automatic processes,
however, assume the domain model is defined by one canonical set of rules.

We postulate that the domain rule set is not a fixed entity, but one that can
be specialized for each learning context by considering factors related to scope
of coverage and sequence of progressions. Furthermore, instead of separating all
student factors into the student model, we explore the effects of incorporating
student population traits in the design of the domain rules. For example, in de-
termining the optimal rule set for introductory algebra, we consider the relative
complexity of rule trigger conditions, and the working memory demands related

to the number of rules students need to remember. By considering more factors
in the process of the domain model creation, we aim to more precisely target the
domain model to the specific scope and sequence goals as well as student traits.

This paper presents RuleSynth, a framework for distilling the domain
model that is optimal for a specific set of learning objectives. Given an ob-
jective function and an initial (suboptimal) set of rules, RuleSynth produces a
new set of rules that collectively optimize the given learning objective. We focus
on creating a domain model in terms of condition-action rules (akin to produc-
tion rules in a cognitive tutor), so that it can be applied to any existing or new
rule-based tutoring system. RuleSynth creates new rules using DSL-driven
inductive program synthesis.

The key contributions of this work are a new framework for customizing
the domain model that optimizes certain feature properties, and a preliminary
evaluation of a proof-of-concept implementation in the domain of introductory
algebra. Our evaluation shows that different learning objectives lead to dramat-
ically different rule sets and that we can do so efficiently enough for customized
intelligent tutoring systems to become a reality in the near future.

2 System Description

In this paper, we focus on domain models for solving linear algebraic equations.
We represent a domain model as a set of condition-action rules (akin to pro-
duction rules in a cognitive tutor). Each rule has a condition for when the rule
may be applied, and an action to perform the rule. Our goal is to automatically
produce a domain model (i.e., set of rules) optimizing some learning criteria.

To work towards this goal, we built a proof-of-concept system, RuleSynth,
that produces the best rule set given an initial domain model for algebra prob-
lems and an objective function. The objective function captures student con-
straints (such as limited working memory) and goals (such as solving problems
in a few steps). Our starting set of rules is listed in Table 1; we call these rules ax-
ioms. Our axioms, along with backtracking search, are sufficient to solve a large
class of linear algebra problems. However, while simple to state and suitable for
automated problem solving, this set of rules is difficult for humans to use, as it
leads to inefficient solutions with many steps. RuleSynth uses the axioms to
synthesize a large set of macro rules that lead to shorter solutions, and it uses
the objective function to select the best rule set from the resulting pool of rules.

3 Evaluation

To evaluate our framework, we used it to generate several novel rules for solving
algebra problems, which are shown in in Table 2. We then investigated a few
hypothetical scenarios and objective functions on these synthesized rules. Our
objective functions and cost models were hand-crafted, but, in principle, could
be based on student data or generically defined based on cognitive principles.
These sample scenarios are not exhaustive nor intended to be exemplars for

Table 1. The set of axioms used as input for our system.

Label Description Example
A Additive Identity x + 0→ x
B Adding Constants 2 + 3→ 5
C Multiplicative Identity 1x→ x
D Multiplying by Zero 0(x + 2)→ 0
E Multiplying Constants 2 ∗ 3→ 6
F Division Identity x

1 → x
G Canceling Fractions 2x

2y →
x
y

H Multiplying Fractions 3
(

2x
4

)
→ (2∗3)x

4

I Factoring 3x + 4x→ (3 + 4)x
J Pushing Negatives −(3x)→ (−3)x
K Expanding Negatives −x→ −1x
L Adding to Both Sides x + 4 = 2→ x + 4 +−4 = 2 +−4
M Dividing Both Sides 3x = 2→ 3x

3 = 2
3

N Multiplying Both Sides x
3 = 2→ 3

(
x
3

)
= 2 ∗ 3

what would be used in a real tutor. Rather, they are intended to illustrate how a
variety of objective functions can produce different domain models for different
situations, all starting from the same synthesized rule set. Based on our results,
we believe that, through the crafting of appropriate objective functions (which
may depend on student models and live data), tutors could use RuleSynth to
automatically adapt their domain models to particular learning situations.

Table 2. A sample of the macro rules found and synthesized by our system, with
example applications. Several are common rules taught in algebra such as combining
like terms (IB) or moving a constant’s opposite to the other side of an equation (LBA).

Pattern Example
BA x + 2 +−2→ x
LBA x + 2 = 3→ x = 2 +−3
MG 3x = 6→ x = 6

3

LBAMG 3x + 2 = 1→ x = 1+−2
3

NHG x
4 = 2→ x = 2 ∗ 4

IB 2x + 4x→ 6x
LJIBD x + 3y = 2 + 3→ x = 2 + 3 +−(3y)
KMG −x = 5→ x = 5

−1

BLBA 3 + x + 2 = 1→ x = 1 +−5

3.1 Balancing solution size and rule set size

Our first scenario considers balancing the size of the rule set and the efficiency of
solutions. Given a set of rulesR and example problems E , we define the objective
function to be a weighted sum of the rule-set cost and the solution cost, subject
to the constraint that all problems in E are solvable with the chosen rule set
R′ ⊆ R. Thus, our objective function takes the form

C(R′, E) = arg min
R′⊆R

αR(R′) + (1− α)S(R′, E) (1)

where α ∈ [0, 1] is a weighting term, R(R′) is the rule-set cost, and S(R′, E) is
the solution cost.

We define the rule-set cost to be the sum of the costs of its rules, i.e., R(R′) =∑
r∈R′ cost(r). The cost of a rule is itself a weighted sum of costs of its condition

and action. The condition cost measures the size of the condition expression, thus
estimating the amount of work required to evaluate the condition. The action
cost is defined as the number of elements that are added or removed to the
equation during the application of a rule. For example, moving a term to the
other side of an equation costs two: one to remove the term and one to add it to
the other side. Intuitively, macros tend to have more expensive conditions (i.e.,
they are harder to apply) but lower action costs than the axiom subsequence
they replace (because they compress the replaced actions into fewer steps).

The solution cost S(R′, E) minimizes the average solution cost over all exam-
ple problems E . That is, S(R′, E) = 1

|E|
∑

e∈E min{r}n∈solns(R′,e)
∑n

i=1 cost(ri).

The function solns(R′, e) is defined as the set of all finite sequences of rules from
R′ which solve the problem e. We therefore take the cost of a problem e ∈ E to
be the sum of the cost of every rule in the shortest solution to that problem.

We considered two different versions of the optimization problem defined by
Equation 1, which set the weighting term α to nearly 1 and to 0.3, respectively.
The first version (α ≈ 1), which we call Optimization A, represents an objective
function that tries to find all of the rules that are used in the shortest solutions
to E , discarding only unused rules. The second version (α = 0.3), which we call
Optimization B, represents a trade-off between having efficient solutions and
keeping the total size of the rule set small.

Table 3 compares the results of running each optimization on our synthesized
rules. For Optimization A, which considers only average solution cost, the rule
set includes a large number of rules based on macros. This is because almost
every macro makes at least one example more efficient to solve. Also, there are
very few axioms. Most of them, while generally applicable, are obsolesced by
one or more macro rules. On the other hand, Optimization B, which balances
average solution cost with total rule cost, contains many more axioms and fewer
macros. The axioms, while making solutions more expensive since more steps
are required, are more broadly applicable since they can be used in combination.
However, some macro rules which are themselves very broadly applicable (e.g.,
combining like terms) remain in the optimal solution. Making this weighting
dynamic in a live tutor would enable the tutor to adjust the domain model
along the spectrum of maximizing solution efficiency or minimizing rule set size.

3.2 Adapting rule sets to teacher-specified problem sequence

As another example scenario, suppose that we have a sequence of problems
we wish to use (perhaps provided by a teacher), broken up into discrete units.
RuleSynth can automatically find a sequence of rule sets that cover the entire
sequence of problems, introducing only the minimal number of rules when needed
for each unit. That is, for each unit of problems, we would like the minimal

Table 3. Optimization results for an objective function minimizing average solution
cost and total rule cost. Optimization A considers only average rule cost whereas Op-
timization B balances the two.

Rules from Optimization A Rules from Optimization B
A KMG A L
C LBAMGLBA B IB
D LJIBDLBA C NHG
MC LJIBD D MG
F IB MC LBA
G NHG F
J LBAMG G
BLBA MG H
KNHGMG LBA J
NHGHMBHGMG K

set of rules (with respect to the cost defined in Equation 1) that covers these
problems and is a superset of the rule set for the previous sequence. Given a
sequence of problem sets E1, . . . , En, we solve n sequential optimizations, where
the ith objective function is C(Ri, Ei), subject to the constraints that all of Ei
are solvable with Ri and either i = 1 or Ri ⊇ Ri−1. We chose such an example
problem sequence and ran this optimization (with α = 0.3), showing the results
in Table 4. As can be seen, RuleSynth finds a small number of rules to add
for each successive unit of problems. We only chose a few basic features for this
optimization, but with a richer domain model, future versions of our framework
can have a more sophisticated function for choosing progressions of rules.

Table 4. Optimization results for generating a sequence of rules. Each column is a
successive unit of example problems. This tables shows which new rules (in addition
to all previous columns) are required to cover the new set of problems.

Percent Coverage 25% 50% 75% 100%
New Rules Added LBA, MB, BLAB NHG, LJIBD, E IB, J KMG, KNHGMG

D, C, A NHGHMHGMG

4 Related Work

There is a long history of work in learning within cognitive architectures [5].
In some of these architectures, there is a concept of “chunking” rules to create
new rules. Our system explicitly is performing a similar kind of chunking by
finding macros of the given set of rules, and synthesizing conditions and actions
for these macros to create novel rules. More recently, researchers have looked
at methods to help automate authoring domain models in tutors, including rule
learning [4]. Closely related to our system is SimStudent, which is capable of
inductively learning rules (for primarily algebra but also other domains) using
Inductive Logic Programming (ILP) [7] and unsupervised learning of deep do-
main features with probabilistic grammars [8]. Other work used ILP to search for

rules given example applications from experts [3]. Our work is similarly inductive
but uses program synthesis techniques. Other research has explored approaches
to adapting content on the fly to students, by, for example, using multi-arm ban-
dits for problem selection [1]. We are specifically concerned with choosing rules
and domain models instead of problems. Inductive Programming / Synthesis has
been applied to problem and solution generation [2], hint/feedback generation [6,
11], and rule generation [10]. Previous work in rule learning focused on learning
individual rules, while we explore adapting rule sets to given learning criteria.

5 Conclusion

This paper presents RuleSynth, a framework for generating custom domain
models that optimize desired learning objectives. RuleSynth employs discrete
optimization to select the best set of rules from a pool of axioms and synthesized
macros, according to a desired objective function. Our proof-of-concept imple-
mentation for algebra is able to synthesize several novel macro rules and produce
optimal rule sets for example objective criteria. Our plans for future work in-
clude expanding to other domains to evaluate the generality of our approach,
and exploring the impact of this system in the tutor design process.

References

1. Clement, B., Roy, D., Oudeyer, P.Y., Lopes, M.: Multiarmed bandits for intelligent
tutoring systems. Journal of Educational Data Mining 7(2) (2015)

2. Gulwani, S.: Example-based learning in computer-aided stem education. Commu-
nications of the ACM 57(8), 70–80 (2014)

3. Jarvis, M.P., Nuzzo-Jones, G., Heffernan, N.T.: Applying machine learning tech-
niques to rule generation in intelligent tutoring systems. In: Intelligent Tutoring
Systems. pp. 541–553. Springer (2004)

4. Koedinger, K.R., Brunskill, E., Baker, R.S., McLaughlin, E.A., Stamper, J.: New
potentials for data-driven intelligent tutoring system development and optimiza-
tion. AI Magazine 34(3), 27–41 (2013)

5. Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: Research issues and
challenges. Cognitive Systems Research 10(2), 141–160 (2009)

6. Lazar, T., Bratko, I.: Data-driven program synthesis for hint generation in pro-
gramming tutors. In: Intelligent Tutoring Systems. pp. 306–311. Springer (2014)

7. Li, N., Cohen, W., Koedinger, K.R., Matsuda, N.: A machine learning approach
for automatic student model discovery. In: Educational Data Mining 2011 (2010)

8. Li, N., Schreiber, A.J., Cohen, W., Koedinger, K.: Efficient complex skill acquisi-
tion through representation learning. Advances in Cognitive Systems 2 (2012)

9. Murray, T.: Authoring intelligent tutoring systems: An analysis of the state of the
art. International Journal of Artificial Intelligence in Education 10 (1999)

10. Schmid, U., Kitzelmann, E.: Inductive rule learning on the knowledge level. Cog-
nitive Systems Research 12(3), 237–248 (2011)

11. Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feedback generation for in-
troductory programming assignments. In: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation (2013)

