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ABSTRACT
Open-ended educational tools can encourage creativity and
active engagement, and may be used beyond the classroom.
Being able to model and predict learner performance in such
tools is a critical component to assist the student, and enable
tool refinement. However, open-ended educational domains
typically allow an extremely broad range of learner input.
As such, building the same kind of cognitive models often
used to track and predict student behavior in existing sys-
tems is challenging. In addition, the resulting large spaces
of user input coupled with comparatively sparse observed
data, limits the applicability of straightforward classifica-
tion methods. We address these difficulties with a new algo-
rithm that combines Markov models, state aggregation, and
player heuristic search, dynamically selecting between these
methods based on the amount of available data. Applied
to a popular educational game, our hybrid model achieved
greater predictive accuracy than any of the methods alone,
and performed significantly better than a random baseline.
We demonstrate how our model can learn player heuristics
on data from one task that accurately predict performance
on future tasks, and explain how our model retains param-
eters that are interpretable to non-expert users.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General – Games; H.5.0
[Information interfaces and presentation]: General

Keywords
Educational games, user modeling

1. INTRODUCTION
Open-ended learning environments offer promises of in-
creased engagement, deep learning, transfer of skills to new
tasks, and opportunities for instructors to observe the learn-
ing process. One example of such environments is educa-
tional games, where players have an opportunity to explore
and experiment with a particular educational domain [12].

However, many of these exciting potential applications re-
quire low-level behavioral models of how players behave. For
example, if we can predict that a player will struggle with
a particular concept, we could try to preempt this confu-
sion with tutorials or choose specific levels designed to ad-
dress those problems. Additionally, as forcing players to
complete an explicit knowledge test often breaks the game
flow and causes many players to quit, we could estimate a
player’s knowledge of target concepts by predicting perfor-
mance on test levels that are carefully designed to measure
understanding of those concepts. Finally, we might even
be able to compare user populations by examining models
learned from their data and hypothesize optimal learning
pathways for each population.

Accurate predictions of user behavior have been achieved in
existing educational software such as intelligent tutors [10,
9, 11]. However, we cannot directly apply such methods to
educational games for two reasons. First, educational games
often have very large state and action spaces. For instance,
a game involving building one of 10 different structures on
100 locations has a state space of size 10100. Second, games
often increase engagement through the addition of game me-
chanics that are not directly linked to the main educational
objectives. One option is to use expert insight to define skills
and behavior associated with these skills for the educational
game. However, doing so can be extremely labor intensive:
for intelligent tutors for structured domains that often in-
clude activities labeled with skills, it has been estimated
that 200-300 hours of expert development are necessary to
produce one hour of content for intelligent tutors [4]. As
educational games are more open-ended, allowing students
to input a much wider variety of input compared to many
popular intelligent tutoring systems, we expect that tagging
and building structure models for them would be even more
time consuming than for structured topics such as Algebra.

Given these limitations, we would like a method requiring
minimal expert authoring, capable of inferring likely user be-
havior based on collected data. One popular approach with
these properties from the field of recommendation systems is
collaborative filtering [18, 21]. Collaborative filtering can be
effective with no expert authoring at all if there is enough
data; however, the large state space of many educational
games often results in high degrees of data sparsity. To
maintain accuracy in spite of such sparsity, there has been
an emergence of hybrid models that supplement collabora-
tive filtering with limited context-specific information when



there is not enough data [16, 24]. Though we are inspired by
this work, such methods are not applicable to educational
games: we cannot ask users for ranked preferences and are
restricted to using behavioral models only, making our task
significantly more difficult.

To address these challenges, we create a new ensemble al-
gorithm that leverages the various strengths of multiple dis-
parate models for predicting player behavior. We propose
a tripartite methodology that combines elements of collab-
orative filtering with state-space clustering and modeling
players as parameterized heuristic searchers. Using all three
methods, we are able to achieve better performance than
using any one of these approaches individually. The model
reduces the log-likelihood to 68% of a random baseline, out-
performing any of its components, which achieve between
73% and 80% log-likelihood of random. Because it uses both
a mix of data-driven and model-based approaches, we are
able to predict how people will react to any situation in the
game, a capability that continues to improve as we observe
more players. The model also retains interpretable parame-
ters which we demonstrate by discovering differences in be-
havior between populations from different websites. Finally,
we show that unlike pure collaborative filtering approaches,
we can train our model on data from one level and use it to
accurately predict behavior on future levels. This allows us
to predict how players will respond in situations where we
have no data at all, opening up a host of new applications
such as adaptive level ordering or invisible assessment based
on prediction of player performance on test levels.

2. RELATED WORK
2.1 Educational Technology
There has been substantial research on predicting student
outcomes on tests. Some of these methods are based on dy-
namic assessment, an alternative testing paradigm in which
the student receives assistance while working on problems
[8, 13]. Intelligent Tutoring Systems (ITSs) include built-in
scaffolding and hinting systems, and are therefore an ideal
platform for studying dynamic assessment [10]. Studies have
shown that this data has strong predictive power. Feng et al.
show that 40 minutes of dynamic assessment in the ASSIST-
ment system is more predictive of grades on an end-of-year
standaradized test than the same amount of static assess-
ment [9]. Feng et al. also showed that longitudinal dynamic
assessment data is more effective at predicting strandard-
ized test scores for middle school students than short-term
dynamic assessment data [10]. Fuchs et al. showed that dy-
namic assessment data from third-grade students was useful
for predicting scores on far-transfer problem-solving ques-
tions [11]. These methods are useful for predicting student
outcomes on tests. However, we require much finer granu-
larity for applications such as predicting how students will
respond to new levels without any training data or offering
just-in-time hints only when we predict the player is about
to make a particular type of move.

2.2 Collaborative Filtering
Machine learning classification is often used to predict user
behavior. However, many standard classification techniques
are ill-suited for the educational game domain, due to the
enormous set of possible inputs (classes) from which a player

can choose. We also require a way to predict a player may
make a new move that is possible, but has not been done by
any previous player.

Another promising approach for predicting user behavior is
collaborative filtering. It relies on the assumption that if two
users have a similar state, and one user behaves in a par-
ticular way in response to a new situation, the other user
will likely show the same behavior. A good survey of col-
laborative filtering approaches can be found in [21]. Several
researchers have used these methods in the educational data
mining domain, including using matrix or tensor factoriza-
tion models to predict student item responses [7], or student
performance on problems [22]. Unfortunately, their methods
do not easily transfer to our problem, which involves pre-
dicting choices of transitions between game states instead of
performance on problems given out one at a time; our data
is simply much more sparse.

Of course, data sparsity is known to offer a key challenge
to collaborative filtering, making it unable to issue accurate
positions given very limited data [21]. Data sparsity is par-
ticularly problematic in our domain, an educational puzzle
game with a large search space, because users diverge very
quickly and most states are rarely visited. One way of allevi-
ating data sparsity is to combine collaborative filtering with
external information. Content-based approaches, which con-
sider users or items to be similar if they share similarity in
respect to features selected by a designer [19], can be used to
augment collaborative filtering in situations where there is
not enough data. For example, Melville et al. [16] use collab-
orative filtering in situations where there is enough data and
look for similarities in content in cases where data is lacking.
Ziegler et al. [24] propose a different model in which items
are categorized into a taxonomy, and recommendations are
made not only through user ratings but also categories of
demonstrated interest. These methods do not directly ap-
ply in our domain, where we have only behavioral data and
must predict transitions between states instead of rankings
of items. However, we are inspired by their general ideas;
more specifically, our method allows the designer to spec-
ify similarity functions to combat data sparsity and takes
advantage of our domain structure by modeling players as
heuristically guided probabilistic searchers.

2.3 Modeling Players in Interactive Games
Game reseachers have tried to estimate player preferences,
skills, and behaviors based on in-game activities [6, 20].
Many of these approaches rely on expert-authored player
models, although some have used data-driven techniques.
For example, Pedersen et al. tried to predict the player’s
emotional state in Super Mario Bros by training a neural
network on features such as number of deaths [17]. Weber
et al. modeled player retention in a sports game with regres-
sions to rank expert-chosen features such as playing style
[23]. Our method differs by modeling low-level actions di-
rectly, a significantly more complicated task on which stan-
dard classification techniques are difficult to apply.

Some work has tried to predict low-level actions. Albrecht et
al. used Dynamic Belief Networks to predict players’ next
actions, next locations, and current goals in an adventure
game [3]. This work only applies to games with a very spe-



cific structure involving locations and quests, which we lack.
Our work is probably closest to that of Jansen et al [15], who
predicted moves of chess grandmasters by modeling them as
low-depth heuristic searchers. Unfortunately, this method
alone is not very accurate, and as we show later does not
tend to improve as we collect more data. Our ensemble
method relies on collected data wherever possible and mod-
els players as heuristic searchers only as a last resort, giving
us significantly better predictive power.

3. GAME DESCRIPTION
We will first describe the game used in our analysis. Refrac-
tion is a educational fractions game that involves splitting
lasers into fractional amounts. The player interacts with a
grid that contains laser sources, target spaceships, and aster-
oids, as shown in Figure 1. The goal is to satisfy the target
spaceships and avoid asteroids by placing pieces on the grid.
Some pieces change the laser direction and others split the
laser into two or three equal parts. To win, the player must
correctly satisfy all targets at the same time, a task that re-
quires both spatial and mathematical problem solving skills.
Some levels contain coins, optional rewards that can be col-
lected by satisfying all target spaceships while a laser of the
correct value passes through the coin.

At any point in a level, the player may pick up a piece on the
board or drop a piece currently not in play onto the board on
any location. Let b be the number of open board locations
(about 100), and p the number of available pieces (usually at
least 6). Then the size of the state space is approximately
b permute p, the number of permutations of open board
locations for the pieces, and has a branching factor of about
bp. Thus the overwhelming majority of game states and
transitions have never been observed, a situation common
in open-ended educational environments.

In the analysis that follows, we primarily use player data
gathered from level 8 of Refraction, the first non-tutorial
level. This level was chosen because it was the non-tutorial
level for which we had the most data. The layout of the
level can be seen in Figure 1.

4. PREDICTIVE TASK
Our objective is to predict player behavior in the educa-
tional game Refraction, similar to how student models in
intelligent tutoring systems can be used to predict student
input. We now define some of the notation we use in the rest
of the paper. For a given level, our task is the following. Let
S be the set of all possible game states on the level. A game
state is a particular configuration of pieces on the board,
independent of time. Each player i in a set of players P of a
level goes through a series of game states. We are concerned
with predicting the next substantive class of move the player
will try, so we preprocess the data to eliminate consecutive
duplicate states, leaving us with the list of player’s states,
Si,1, . . . , Si,mi . We define a set of collapsed states, C, and a
collapse function mapping S→ C. These are selected by the
designer to reduce states to features of interest, as in Table
1. For s ∈ S, define succ(s) to be the set of collapsed states
reachable in one action from s, i.e., succ(s) = {collapse(s′) |
s′ is reachable in one move from s}. The predictive model
M assigns a probability that the player will enter a col-
lapsed state depending on his history. Given player i’s

sequence of states up to time j ≤ mi, Si,1, . . . , Sj−1, we
want to predict the probability of them entering a col-
lapsed state at time j, Pr(collapse(Si,j) | Si,1, . . . , Si,j−1),
where

∑
c∈succ(Si,j−1)

Pr(c | Si,1, ..., Si,j−1) = 1. The to-

tal probability of the player’s sequence of states, Pi, under
the model is then Pr(Pi | M) =

∏mi
j=1 Pr(collapse(Si,j) |

Si,1, . . . , Si,j−1). The total probability of the set of players’
traces P is Pr(P |M) =

∏
i∈P Pr(Pi |M).

The choice of collapse is left up to the designer and depends
on the intended application. Prediction of player search be-
havior in a game with maze-like elements, for example, may
only require the model to predict where the player will move
to next. Or, a system designed to give mathematical hints
might only require a model capable of predicting the value of
the next fraction the player will produce. In Refraction, we
are primarily concerned with how the player will use pieces
and manipulate the laser. This gives us good, though in-
complete, overall information on their playing ability, and is
described in Table 1.

Figure 1: A game state from level 8 of Refraction,
on which we will perform most of our analysis. The
pieces are used to split lasers into fractional amounts
and redirect them to satisfy the target spaceships.
All ships must be satisfied at the same time to win.

Feature Value
Fringe lasers 2 1/2,East
Pieces used 1 W-NS, 2 S-E, 1 N-E, 1 W-N
Ship values satisfied (none)
Pieces blocking lasers Benders: 1 S-E
% coins satisfied 0.0

Table 1: The collapse function we use in Refraction,
applied to the state in Figure 1. States that share
all feature values are considered the same. Pieces
are listed as (input)-(outputs) in cardinal directions,
such that W-NS is a splitter with a westward input
and north-south outputs. Fringe lasers are those at
the edge of the laser graph either entering the wrong
kind of ship or not entering a piece at all.

5. METRICS
In this section we explain how we will evaluate the perfor-
mance of our predictive model. Our aim is to build models



that accurately reflect how populations behave in Refraction
levels. We use a similar evaluation metric as [15] and [5] by
measuring the information content, in bits, of the population
under our predictive model. This number is easily calculated
as: I(P |M) = log2 Pr(P |M). We then compare the infor-
mation content of the data under our model as compared to
the information content of the data under a random model,

Compression(P | M) = I(P |M)
I(P |Random)

. In general, the goal

is to find M maximizing Pr(P | M), which corresponds to
minimizing Compression(P | M). We choose this metric
as it offers some interpretability, with 0 indicating perfect
ability to predict every move and 1 indicating no compres-
sion. This metric also retains the same meaning and scale
regardless of the number of players. Unless otherwise stated,
all evaluations of goodness of fit are done with 5-fold cross-
validation on 1000 players, drawn at random from players
from the website Kongregate from a period of August 2011
to September 2012.

6. HYBRID BEHAVIOR PREDICTOR
Here, we describe the three portions of our hybrid predic-
tive model and describe the conditions under which each
is used. Each individual method has different benefits and
drawbacks and is suitable at a different level of data. We use
a combination of them to keep all their benefits, giving us
good predictive power, interpretability, and generalizability.
At the end, we describe the full model in detail.

6.1 Markov
Collaborative filtering models, which search for similar play-
ers and use their data to predict the behavior of new players,
are an attractive approach for our problem space because
they are data-driven and model-free. There are a number of
methods for determining the similarity of two players. We
describe and compare two methods: a simple Markov model
with no knowledge of player history and a model with full
awareness of player history.

In the simple Markov model, we compute the probability of
a state transition based only on the player’s current state.
To estimate these state transitions, we use our prior data,
aggregating together any examples which start in the same
initial state. To prevent the probability of a player from go-
ing to 0 when they make a transition that we have not seen
before, we add a smoothing parameter r. With r probability,
the player will choose between the possible successor states
succ(Si,j−1) randomly, and with the remaining 1 − r prob-
ability, the player will move according to the Markov model
as outlined above. We empirically determine that the best
performance is achieved with r = 0.3.

One weakness of this similarity metric is that it ignores
player history. We also attempted other collaborative fil-
tering models. For example, we could consider using only
the transitions from other players with the same full history
of moves on that level when issuing predictions. In the limit
of infinite data, we would expect this model to outperform
all others based only on order of visits to game states.

We found, however, that the performance of the second
history-aware model is worse than the performance of the
simple Markov model. The comparison is shown in Figure

2. The underlying issue is that for most observed paths, no
previously observed player has followed the exact same path
of results. The history-aware model can perform no bet-
ter than random in these cases, explaining its poor perfor-
mance. After experimenting with several different collabo-
rative filtering-based models, we settled on the pure Markov
model described first as the most straightforward and accu-
rate approach, achieving a base compression of 0.756.
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Figure 2: Effect of collaborative filtering models
where players are non-Markovian. We create a hy-
brid model where we first attempt to find similar
players under exact path matching, and if there are
fewer than n of them, we consult a simple Markov
model instead. The Markov model is the same or
better at predicting player moves.

6.2 State Aggregation
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Figure 3: Many moves occur in locations where we
have little data, even with 1000 players.

In the limit of infinite data, we would expect the Markov
model to outperform all other methods that make the same
assumption that players are history-free. However, the
amount of data required for good performance can be quite
high. In our case, this problem is compounded by the fact
that puzzle game state spaces are difficult to search by de-
sign. As a result, most states are visited infrequently, as is
shown in Figure 3. It is challenging to predict how new play-
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Figure 4: Selection of ba, the backoff parameter con-
trolling when to consult transitions from all similar
states instead of exact states.

ers will behave when they reach these uncommonly-visited
states.

One way to address this data sparsity problem is to aggre-
gate data from states that are similar, and use this aggre-
gated data to make predictions. This requires only a mi-
nor modification to the original Markov model: instead of
looking at the distribution of transitions from the player’s
current state, we look at the distribution of transitions from
all states similar to the player’s current state. Here, we use
collapse to find similar states, though the designer could
substitute other functions if desired. To determine when to
use this state aggregation approach, we introduce a back-
off parameter ba. When a state has been visited by fewer
than ba players, we switch from the Markov model to the
aggregation model.

The aggregated states are not exactly the same as the cur-
rent state because the collapse function throws away some
amount of useful data. Thus, we would expect this approach
to be most beneficial when data is extremely sparse, and
become progressively less beneficial as we gather more data.
This is exactly the effect we observe, as seen in Figure 4.
In general, the best value of ba depends on the similarity of
player’s traces through the state space. For Refraction, the
optimal value is ba = 4. The overall compression drops from
0.756 to 0.682 when using an approach that combines state
aggregation and the Markov model, compared to using the
Markov model alone. Applying state aggregation blindly in
all cases erases most of the improvement and results in a
compression of 0.732, so it is important to tune this param-
eter correctly.

6.3 Player Heuristic Search
Both of the previously described models have certain ad-
vantages. They both require minimal designer input: state
space and transition functions for the Markov model, and a
similarity function for the aggregation model. Both models
also only improve as more data is gathered. Unfortunately,
these methods also have two significant drawbacks: they
perform poorly when there is very little data available, and
they have parameters that are difficult to interpret. An ed-

ucator trying to determine whether a game level teaches a
particular math strategy, for example, would have difficulty
learning this from the transition probabilities of a graph with
tens of thousands of states.

In order to address these shortcomings, we use a method
that models how players explore the game space in cases
where data is particularly sparse. We assume that play-
ers are heuristically-guided probabilistic searchers. This as-
sumption is reasonable given that players are attempting to
solve fraction puzzles which are fun precisely because the
solution is not obvious. This allows us to utilize informa-
tion from every game state and generalize that information
to new states. In comparison, the Markov with state aggre-
gation approach can only utilize data from similar states.
We expect this heuristic search approach to be most effec-
tive when data is scarce. Since the search model is only
an approximation of player behavior, this method will be-
come worse relative to the Markov with state aggregation
approach as data become more plentiful, since the Markov
approach has the power to precisely fit player behavior with
enough data.

We provide a brief summary of the player heuristic search
algorithm here, but for a full formalization of the algorithm
please refer to Jansen et al. [15]. Note that we make a few
modifications to the Jansen algorithm, described below. Our
search algorithm assumes that users select moves by follow-
ing a heuristic function v, which determines the likelihood
that a player will visit a particular collapsed state. The func-
tion v is a weighted linear sum of simple designer-specified
functions a1, . . . , an that operate on collapsed states c ∈ C:
v(c) =

∑n
k=1 λkak(c). Players, when they make a move,

apply the heuristic to each possible collapsed successor in
c ∈ succ(Si,j−1) and assign it probability mass ev(c) to pre-
vent negative probabilities, given by (1).

Pr(collapse(Si,j) | Si,j−1, λ1, . . . , λn) =
ev(collapse(Si,j))∑

i

ev(Ci)

(1)
We optimize the weights λk to maximize the log-likelihood
of the data using Covariance Matrix Adaptation: Evolution-
ary Strategy, an optimizer designed to run on noisy functions
with difficult-to-compute gradients [14]. Our algorithm dif-
fers from the original in that both the possible successor
states and the state that the heuristic operates on are col-
lapsed states, since we want to predict the general type of
move players will make rather than their exact move. As
before, we also introduce a backoff parameter bh. When
searching for transitions from aggregated players, if there
are fewer than bh datapoints, we switch from the Markov
with aggregation model to the heuristic model. Empirically
we discover that the optimal value is achieved at bh = 4.

The base heuristics a1, . . . , an are designer-specified, and
should reflect the components of the game that players pay
attention to while choosing between moves. The heuristics
we use for Refraction are listed in Table 2. In practice, the
selection of heuristics is closely related to the definition of
the collapse function used to project raw game states in the
prediction task, since both are chosen according to the game
features that the designer views as important.



Table 2: Basic heuristics and values in Figure 1

Heuristic Value in above state
% ships satisfied 0
% ships matching fringe laser values 1
% pieces used 5/6
% pieces blocking lasers 1/6
% coins satisfied 0

The model of player heuristic search allows us to predict
subsequent moves even when a player is visiting a state that
has never been seen before. Furthermore, the weights λk

that are optimized in this model are interpretable; they tell
us how the population of players values each of the game fea-
tures defined in the heuristics a. This information can help
designers learn about their games, as described in Section 8.

6.4 Full Hybrid Model
Tying all the components together, we now provide a de-
scription of the full hybrid prediction model for Refraction,
which combines the simple Markov model, state aggregation,
and player heuristic search.

1. Assume a player is currently in state sa.

2. Consult the Markov model for all other players’ tran-
sitions to collapsed states from state sa. If there are ba
or more transitions, predict the observed distribution
with the random action smoothing parameter of r.

3. Otherwise, apply the state aggregation function to all
the nodes in the graph, and count all transitions from
all states with collapsed value collapse(sa). If there are
bh or more transitions, take the observed distribution,
remove any states impossible to reach from sa, and
predict the resulting distribution smoothed by r.

4. Otherwise, apply the heuristic with parameters learned
from the training set to each of the successors using
Equation (1) to get the probability of each transition.

7. EXPERIMENTS
We now evaluate the performance of our predictive model.
The performance of the full backoff model, from Markov to
state aggregation to player heuristic search depending on
the available data, is shown in Figure 5(a). Some features
of the graph are worth noting.

• The full model is superior to any of the individual mod-
els at nearly all tested levels of data, with the Markov
with state aggregation a close second.

• The data-driven approaches continuously improve as
more data as added.

• The heuristic function is superior at the start, but
its performance does not improve very much as more
players are added. This is almost certainly because
the model makes very strong assumptions about how
players behave that allow it to take advantage of ex-
tremely sparse data; however, because the model is not
completely accurate, it contains inherent bias that no
amount of data will remove.

• The gap between Markov, Markov with state aggrega-
tion, and the full backoff model narrow as the amount
of data increases. As we gather more players, the
amount of probability mass on players in uncommonly
visited states shrinks, so the Markov model is used to
predict player behavior in more and more situations.

While the heuristic portion of the model seems to offer only
incremental improvements, its true power can be seen when
we attempt to generalize our models to future levels, as
shown in Figure 5(b). Using 1000 players, we first learn
heuristic parameters from level 8. We then use the learned
heuristic to predict player behavior on levels 9, 10, and 11,
comparing these to a Markov with state aggregation model
trained on level 8. To get a sense of what “good” perfor-
mance might look like, we also train player search heuristics
and full models learned on the transfer levels and evalu-
ate their compression values with 5-fold cross-validation as
usual. We note some features of the graph here.

• We see immediately that the Markov with aggregation
portion of the model has no generalization power at
all. The state space and possible transitions via succ
are completely different on future levels, so it’s impos-
sible to find similar players and use their transitions to
predict moves later on.

• The heuristic portion of the model, on the other hand,
allows it to predict what players will do in future levels.
When compared to full models fit directly to player
data from those levels, it is very good at predicting
behavior on level 9, somewhat good at predicting be-
havior on level 10, and not very good at predicting
behavior on level 11. Educational games are explicitly
designed to teach players new and better strategies as
they play, so we would expect performance to decrease
over time.

• In addition, we can see that by level 11 even a heuristic
trained on player data from that level is losing power.
This means that the features of the state space play-
ers pay attention to is no longer being captured by the
component heuristic functions a1, . . . , an. As the game
introduces new concepts such as compound fractions,
equivalent fractions, and fraction addition, players will
need to pay attention to more features of the state
space than are represented in our choice of a1, . . . , an.
This speaks to the importance of choosing these com-
ponent heuristics for the method’s performance.

We caution that the generalization power of our model in
these open-ended learning domains can only reasonably be
expected to be high for the next few tasks and will be poor
if those tasks have radically different state spaces from the
training tasks. These caveats notwithstanding, these are
promising results that suggest the learned heuristic cap-
tures something fundamental about how people navigate the
search space of a Refraction level. This could potentially al-
low designers to guess how players at a certain point in time
will behave on levels without ever needing to release up-
dated versions of the game, or allow educators to simulate
and evaluate user performance on assessment levels without
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Table 3: Heuristic parameters learned on different player populations

Population % ships % ships matching % correct pieces % incorrect pieces % coins Compression
Kongregate 2.529 0.116 0.317 -13.391 0.937 0.782
BrainPOP 1.868 -0.149 1.584 -8.527 0.665 0.862

needing to interrupt player engagement by actually giving
these tasks.

8. INTERPRETABILITY
One of the key drawbacks of model-free methods are that
their results are extremely difficult to interpret, even for
experts. The Markov model with state aggregation suffers
from this problem, as it is essentially a black box that pre-
dicts distributions of transitions. The learned heuristic pa-
rameters, on the other hand, offer some glimpses into player
behavior. We demonstrate this capability by analyzing some
ways in which players differ between two populations. The
first is Kongregate, a website whose main demographic is
age 18-24 males [2], whose data we have been using up un-
til this point. The second is BrainPOP, a website aimed at
schools whose main demographics are children and middle-
aged women (who are likely teachers) [1]. We learned heuris-
tic weights on 1000 randomly selected players from each
population, shown in Table 3. The goal is not to study
how different populations interact with educational puzzle
games, so we will not dwell on these results; we simply want
to show how these parameters can lead to interesting hy-
potheses about player behavior.

Two interesting differences are immediately apparent based
on these parameters. First, Kongregate players have a
stronger negative weight on states with incorrectly used
pieces as compared to BrainPOP players, suggesting they
are less prone to placing pieces incorrectly. Second, Brain-
POP players seem more interested in merely placing pieces
down given the relatively high weight on used pieces pa-
rameter. Given that they also compress more poorly, one
possible explanation is that they have less coherent plans

and so place pieces more randomly. These hypotheses can-
not be verified merely by looking at the heuristic values,
but are sufficiently concrete that we can now run statistical
tests to check their validity. For the following analyses, we
use the non-parametric Wilcoxon rank-sums test due to the
non-normality of our data. As we perform two tests on a
dataset after learning parameters from that same dataset,
we use the Bonferroni correction to avoid false positives;
thus the threshold significance value is set at α = 0.025. We
report effect sizes as r values, with 0.1 considered small, 0.3
medium, and 0.6 large.

To see if Kongregate players understand piece directional-
ity better than BrainPOP players, we assign to each player
the proportion of piece placements such that a laser hits the
dropped piece from an incorrect side. We discard players
who place no pieces. We find a statistically significant effect
of Population on Proportion Drops Incorrect (W=728148,
Z=-18.06, r=0.4, p <0.0001), with Kongregate players hav-
ing a median 0% incorrect drops (N=973) and BrainPOP
players having a median of 12% incorrect drops (N=969).

Next, to see if BrainPOP players act with less foresight,
we ask how often players make a move, only to take it
back immediately. More precisely, for a player who tra-
verses states sa, sb, sc, sb, sc, sa, we look at all the triples
of moves: (sa, sb, sc), (sb, sc, sb), (sc, sb, sc), and (sb, sc, sa).
We then assign to this player the proportion of triples in
which the first and third state are the same, discarding play-
ers who visit fewer than three states. We find a statisti-
cally significant effect of Population on Proportion Take-
backs (W=651589, Z=-23.35, r=0.53, p < 0.0001), with
Kongregate players having a median of 13% takeback moves



(N=968) and BrainPOP players having a median of 32%
takeback moves (N=971).

These analyses show that the learned parameters in our hy-
brid model can be valuable tools for game designers, edu-
cators, and researchers for analyzing how populations use
their systems. For instance, because Kongregate players are
primarily adults and BrainPOP players are primarily chil-
dren, we might wonder if children have more difficulty un-
derstanding piece directionality and spatial reasoning and
plan their moves less carefully than adults do. A researcher
might attempt to generalize these results to other strategic
tasks, while a game designer might create a different version
of Refraction with easier levels, fewer pieces, and clearer
graphics for children. Either way, the learned parameters
are a useful tool to help understand how players behave.

9. CONCLUSION
Predicting player behavior in open-ended learning environ-
ments is an interesting and complex problem. This ability
could be used for a host of automatic applications to bolster
engagement, learning, or transfer. In this paper, by using a
combination of data-driven and model-based approaches, we
presented a “best-of-all-worlds” model able to predict player
behavior in an educational game. First, our hybrid model’s
performance is better than any individual component’s. Sec-
ond, the learned weights of the sub-heuristics are human-
readable and can give insights into how players behave. We
used these parameters to formulate hypotheses about how
two populations behave differently and confirmed them with
strong statistical results. Finally, we demonstrated how the
heuristic portion of the model allows us to generalize and
predict how players will behave on levels in which we have
no data at all, opening the door to many adaptive applica-
tions involving problem ordering and choice.

There are many possible avenues for future work. On a
lower level, we could use more powerful collaborative fil-
tering models taking advantage of timestamps in order to
find similar players. Automatic generation of state aggre-
gation functions and autotuning the ba and bh parameters
would remove the need for some expert authoring. On a
higher level, trying the same method on other open-ended
educational environments, not necessarily games, could tell
us how well the method generalizes. Using the model for
applications such as dynamic hinting systems just when we
predict players will quit or make egregious errors could in-
crease player engagement and learning. Finally, the ability
to estimate behavior on future, unseen problems could be
used to increase transfer by selecting tasks which specifi-
cally target incorrect strategies or concepts we believe the
player has, reflected in the heuristics they use.
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