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Computer-aided tools have revolutionized the way people approach design problems, such as

computer-aided drafting for industrial design. Computers help designers by taking care of

rote tasks and computation, freeing designers’ time and brainpower to focus on the challeng-

ing aspects of problems that cannot be automated. This thesis focuses on using computers

to aid in design tasks involving models of human expertise and learning in problem domains

such as high school mathematics or puzzles.

Educational technology that models the problem-solving process of a learning domain—

called the domain model—powers many promising and proven-effective applications such

as generating problems, providing student feedback, or estimating student understanding.

Creating domain models is an integral part of such applications and is a challenging and

time-consuming process, requiring expertise in both the learning domain and artificial intel-

ligence. Domain models also have applications in fields such as game design: for example,

understanding how puzzles and problems must be solved enables automatic game generation

or analysis. All of these applications require first completing the challenging design task of

creating a domain model.



To aid in this process, we turn to computers, and in particular formal methods, to help

automatically learn domain models. Unlike typical machine learning tasks, the primary goal

of this endeavor is not to solve domain problems automatically, but to get an interpretable

description of how to solve problems. To support this goal, we use program synthesis. For

the domains on which we focus, the domain model takes the form of a set of procedural

rules for problem solving, such as the rules used to solve algebra equations. We model

procedural knowledge as programs in a domain-specific language (DSL) of rules. Then we use

program synthesis to automatically generate these programs. Our approach of using program

synthesis for automated rule learning turns the typical use of programming languages on its

head; rather than using a programming language as a vehicle for a human to give formal

instruction to a computer, we’re using a programming language as a vehicle for a computer

to give formal instruction to humans.

In this thesis, we present a framework, RuleSy, for automatically learning domain mod-

els, instantiated for two separate domains. We present results showing that the rules gener-

ated by RuleSy are comparable to or better than human-designed rules. We additionally

present two novel applications built on top of domain models: first, a mixed-initiative in-

terface for generating puzzle progressions in an educational game, and second, an algorithm

for automatically generating entire game progressions. Lastly, we present results from a case

study in which participants design the DSL for use in RuleSy. We describe the challenges

and difficulties participants encounter in this process, suggesting future avenues of research

to make creating program synthesis tools such as RuleSy easier and accessible to a broad

range of programmers.
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Chapter 1

INTRODUCTION

One of the driving applications of technology has been augmenting what humans can do

and how they approach solving problems. Specifically within design fields, computer-powered

tools (e.g., Computer-Aided Design for architecture/industrial design, Photoshop/Illustrator

for visual art) have revolutionized the way people approach design problems, changed what is

possible, and expanded how many people can fruitfully work on such problems. Computers

can help designers by taking care of rote tasks and computation, freeing designers’ time

and brainpower to focus on the challenging aspects of problems that cannot be automated.

Beyond serving simply as a tool, computers can actually contribute the design, working

with the designer to solve problems. This thesis focuses on using computers to aid in the

particular class of design tasks involving models of human expertise and learning in problem

domains such as high school mathematics or puzzles.

A motivating example of this class of tasks is that of building educational software for

a domain such as solving linear algebraic equations. A key challenge in the design of ed-

ucational applications is modeling the operational knowledge that represents the expertise

and skill of human problem solving. Designing and building this model—called the do-

main model—is necessary and challenging for any educational application. For example, one

needs to decide what should be taught in a class curricula. However, a computer-based tutor

needs a level of formality and detail in the domain model that makes this design task even

more difficult. Solving the domain-model design task lies at the heart of many educational

technology applications and in broader applications such as game design.

Creating domain models by hand takes a tremendous amount of effort and resources [94].

The ability to effectively and efficiently create domain models opens up a path toward
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revolutionary learning technologies such as generating targeted problems that adapt to a

learner’s skill level [2, 25, 3], automatically detecting misconceptions [43], estimating stu-

dent skill [91, 108, 46], or providing adaptive scaffolding for learners. In this thesis, we focus

on the underlying design challenge of automatically learning the domain models on which

these applications are built. The knowledge and expertise we are interested in modeling has

many components, but we focus on procedural knowledge: how to complete tasks and solve

problems.

To illustrate the difficulty of model authoring, consider creating a domain model for K-12

algebra. Suppose that our model includes the basic rules, or axioms, for solving algebra

problems: e.g., factoring, c0x + c1x → (c0 + c1)x, where c0 and c1 are constants and x is

any term; and constant folding, c0 + c1 → c2, where c0 and c1 are constants and c2 is their

sum. Should this model also include the rule for combining like terms, c0x + c1x → c2x,

which composes factoring and constant folding? While such compound rules are redundant

with respect to the axioms, standard educational curricula (e.g., [31]) include them to enable

efficient problem solving with fewer steps, leading to less cognitive load [129] during learning

and problem solving. But there is a limit to how many rules students can be taught, so

the optimal set of axioms and tactics depends on the desired trade-off between maximizing

solving efficiency and minimizing the memorization burden. Aside from making these kinds

of design decisions, the designer has to also create formal representations of all of these

rules, ensuring those representations are logically sound and suitably useful at solving desired

problems. This thesis explores using formal methods—program synthesis in particular—to

overcome these challenges. We present a framework, RuleSy, for automatically learning

domain models by generating formal, sound, and useful rules for problem solving.

1.1 Using Formal Methods for Automatic Domain Model Learning

Automatically learning domain models presents an atypical challenge for standard machine

learning approaches: the goal of this endeavor is not to build a computer system capable of

solving a given problem per se. It is often straightforward to create a computer algorithm
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to solve problems in such learning domains. Automated rule learning is a broad and well-

studied problem [74, 114], but the research traditionally focused on computers learning for

the sake of performing the tasks themselves. Instead, we want to learn an interpretable

description of how to solve a given problem. The results are not meant to be executed by a

computer but rather interpreted by educators, taught to students, and put into tools. The

procedural rules that are best for students are likely very dissimilar to the best computer

algorithm. We strongly favor simple explanations, because simpler rules are more likely to

have lower cognitive load and be more effective for learning. Furthermore, strong guarantees

of soundness are crucial for an educational setting. We do not want rules that are valid only

with high probability; we want to find rules that are guaranteed to be logically sound.

As the technological foundation for our domain model-learning framework, we turn to

formal methods based on automated SAT/SMT solvers [93]. These tools can provide strong

formal guarantees for discrete problems of modest size and can extrapolate from limited

data. This fits precisely with our design task: when creating a domain model for, say,

algebra, we want to be fully certain that what we are creating is logically sound and follows

the laws of algebra. At the same time, because the domain is eventually intended for human

learning, the scope of the problems and the techniques that constitute the domain model are

bounded by the (very small, compared to a computer) constraints of human cognition. This

harmonious alignment is why we will approach this as a formal methods problem rather

than, say, statistical machine learning. Statistical ML is designed for a wholly different

class of problems. Approaches such as statistical ML do not provide the required soundness

guarantees and require different kinds of data as input.

We frame the challenge of learning domain models as a program synthesis problem, where

rules and strategies are represented in a domain-specific programming language (DSL). Pro-

gram synthesis is the task of discovering an executable program (in some specified program-

ming language) that realizes user intent expressed in the form of some specification [48]. In

addition to myriad research and industrial applications, program synthesis has been success-

fully applied to educational applications such as feedback generation [113], solution gener-
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ation [51], and problem generation [3]. Our approach will be to transform the problem of

generating solving strategies into one of synthesizing programs. The DSL used to represent

programs will come as input to the system. That is, the humum using our system designs

the DSL for representing rules and strategies, and the system writes programs in that DSL.

Our approach of using program synthesis for automated rule learning turns the typical

use of programming languages on its head; rather than using a programming language as a

vehicle for a human to give formal instruction to a computer, we’re using a programming

language as a vehicle for a computer to give formal instruction to humans. The limits and

strengths of program synthesis align well with the requirements for our design task. We

require logically sound rules for problem solving, which program synthesis can guarantee. A

primary limitation of program synthesis is scalability, but fortuitously, the limits of human

cognition incentivize finding very small programs anyway. The primary technical contribu-

tions of this thesis are the design and implementation of a domain-specific language and a

framework (built on program synthesis) for synthesizing rules. We adapted this framework,

RuleSy, to two educational domains: solving linear algebraic equations and solving Nono-

grams puzzles. For the purposes of RuleSy, a domain model means a set of programs in

some domain-specific language of solving strategies. Though this is just one possible way

to represent domain models, it is compatible with the way tools such as cognitive tutors

represent their domain models and allows us to model multiple distinct problem domains.

1.2 A Mixed-Initiative Approach to Domain Model Design

Research has investigated using machine learning to ease the domain model authoring process

for computer tutors in particular [67, 90, 77, 61, 111], but these efforts focus primarily

on programming-by-example or by demonstration, in which a tutor designer demonstrates

known rules for a system to learn the formal representation. In contrast, this thesis targets

a broader problem in which the designer doesn’t know the particular rules they want to use

in the domain model. The goal of RuleSy is supporting domain-model design in a mixed-

initiative manner; a hypothetical user works collaboratively with the system to design rules
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that they may not know a priori.

The potential benefits of a system like RuleSy are multiple. First, the computer can

suggest rules and strategies for the model that the designer was not considering, ensuring

a wide variety of problems can be solved. But even in scenarios where the designer has a

good idea about the particular rules they want to use, the computer can ensure such rules

are logically sound.1

We present results from implementing RuleSy for two different educational domains,

finding that RuleSy is able to (a) produce logically sound rules, (b) find known rules actively

used in existing curricula, and (c) discover novel rules that can better solve problems than

currently documented rules.

RuleSy does this with a mixed-initiative interface, where both the (domain model-

designing) user and RuleSy contribute to the design. The user of the framework provides

a description of the learning domain and a domain-specific programming language for repre-

senting procedural rules in that domain, along with training and testing problems. RuleSy,

using these inputs, finds rules in the given language that can solve the training problems and

generalize to others while remaining sound with respect to the domain description. Looking

at how these synthesized rules perform on the testing examples, the user can adjust the

inputs, particularly the DSL, in order to find more desirable rules.

The technical contributions of the thesis focus on realizing a framework capable of finding

rules. However, there remains an important question about how users could fruitfully interact

with such a system. How challenging is the language design process and what could we do

to make it easier? This question is broader than just for the RuleSy application; many

program synthesis applications—such as programming-by-example systems—rely heavily on

the design of the domain-specific language for success. However, very little has been written

about how to effectively design such languages. In this thesis, we explore a preliminary

1Ensuring that hand-authored rules are actually correct is not just a hypothetical problem: during devel-
opment of RuleSy for Nonograms (Chapter 6), two rules in the evaluation were discovered to be logically
faulty. These turned out to be two of the hand-authored rules used for comparison. The authors could
not even write a dozen rules without making multiple logical mistakes, which RuleSy caught!
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user study of RuleSy in which participants attempt to design (part of) the language used

in the Nonograms application of RuleSy. Our focus of this study is evaluating whether

potential designers could successfully design DSLs for use with RuleSy and understanding

what challenges they encountered in doing so. More generally, DSL design for program

synthesis is a crucial yet understudied part of building successful program synthesis systems.

Based on our study, we suggest avenues of future work on this problem.

1.3 Applications of Formal Domain Models

While designing effective domain models is an important component is existing applications

ranging from traditional class curricula and educational technology to game design, access to

detailed formal models of human skill enables novel applications not otherwise feasible. For

the first part of this thesis, we describe two such potential applications, illustrating tools for

designing educational games that rely on domain models to function. Both of these tools are

focused on designing a game’s progression—the sequence of problems/puzzles presented to

the player. Choosing an appropriate progression is a critical challenge for games as well as

education. Which skills are taught in which order and how they are practiced has dramatic

effects on learning.

Designing a progression requires balancing design considerations at multiple scales: indi-

vidual problems or puzzles require iteration and effort to produce, yet broad-scale constraints

such as the order concepts are introduced and how they are combined must be respected.

Traditionally for game design, these considerations must be tracked by hand, typically infor-

mally. The first tool we present is a mixed-initiative interface for designing game progressions

that explicitly models these design constraints and various scales. This allows for both analy-

sis and generation of puzzles and progressions, enabling a designer to work with the computer

to create a complete game. We present a proof-of-concept implementation using the math

education game Refraction and a set of case studies showing novel design interactions such a

tool enables. Modeling the progression necessarily involves modeling the skills and strategies

used to solve puzzles, which is precisely the domain model RuleSy aims to generate.
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Beyond empowering designers creating progressions manually (or in collaboration with

a computer), a long-term goal of game design research is to achieve end-to-end automation

of much of the design process. As our second application, we present a fully generated

version of Refraction. This version, dubbed Infinite Refraction, has an adaptive progression

based on player performance in prior puzzles, choosing which skills should be introduced

next and then choosing the most appropriate puzzle from a large bank of generated puzzles.

We present results from an in-the-wild study comparing Infinite Refraction to the original,

hand-designed game, showing the games comparable on a key engagement metric. As before,

such an application relies heavily on a useful domain model, this time substantially more

complex than the progression design tool. In both cases, the domain model was developed

by hand and much more limited than would be necessary in real-world applications.

In both of these applications, the way a domain model is represented differs from that

of RuleSy; they are both substantially simpler than RuleSy’s representation. We present

these applications specifically to motivate the need to effective tools for domain model design;

the reason the domain models in these applications are quite simple is that it was too

challenging for us to design more complicated ones by hand.

1.4 Structure of This Thesis

The structure of the remainder of the thesis is as follows. Chapters 2 and 3 describe two

novel applications that require domain models for function, motivating the need for a tool

to automatically generate them. Chapter 4 introduces the RuleSy framework to do this

automatic generation of domain models. Chapters 5 and 6 describe our two instantiations

of RuleSy, for the domains of tree-rewrite rules (specifically algebra) and Nonograms,

respectively. Then, Chapter 7 describes a user study investigating the challenges of designing

languages for use with RuleSy, before the concluding chapter describing future work.
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Chapter 2

A MIXED-INITIATIVE TOOL FOR DESIGNING LEVEL
PROGRESSIONS IN GAMES

In this chapter, we present work on a novel user-interface and interaction paradigm

for designing progressions for games, with an example application of the educational math

game Refraction. The tool is an editing environment for a sequence of puzzles in which the

system can work with the designer (hence, mixed-initiative) to generate content. Such an

application is built on top of a domain model of skills used in the game. In our proof-of-

concept implementation, we used a very simplistic model, but any practical application of this

technology would require a much more sophisticted understanding of potential player skills

and strategies, motivating the RuleSy framework presented in later chapters. The following

Chapter 3 presents another example application for fully automatic game generation that

is also built on domain models. Portions of the chapter are reused from or based on prior

technical publications [27].

2.1 Background

The design of interactive experiences that consist of a sequence of episodes building in com-

plexity is an intricate, multi-dimensional design problem that often takes experts a long time

to complete. This is particularly apparent in game design. Designing just a single gameplay

element (e.g., puzzles, challenges, encounters, levels) requires many iterations and interac-

tive playtests to uncover a satisfying result. Crafting a coherent and effective sequence of

these elements into an entire game, called a progression, is even more involved because the

experience of playing the game is highly dependent on the way individual components are

connected. As game designers adjust their game at these different scales—altering details of
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a single gameplay element and scheduling appropriate introduction of those details across the

game’s entire progression—they wrestle with a mixture of formal and informal requirements.

Keeping all of these concerns in mind while designing each level is difficult.

Game designers have adopted semi-structured practices for addressing this complexity.

They often create informal notes and plans that capture a sketch of the progression’s over-

all properties and then consult this document while designing individual levels. Although

developers often create complex in-house tools for authoring game content (e.g., the Dragon

Age Toolset1), these tools focus on individual levels and rarely explicitly model progressions.

As designers improve their level designs in response to testing, the progression plan is rarely

updated and the high-level structure of the final level progression is not articulated in general

terms again.2 As a result, the coherence and intent of the original plan can be lost.

We propose the creation of progression design tools that aid game designers through all

stages of design: sketching, rapid exploration, iteration, and final authoring of a complete

game progression while keeping the progression plan in-context and up-to-date. Such tools

should allow editing of both individual elements and progressions over those elements. Build-

ing on the ideas of mixed-initiative planning and constraint-based game content generation

and verification, we demonstrate a prototype tool using the educational game Refraction

that combines existing single-level editors into a mixed-initiative progression design tool.

This tool represents the game at multiple layers: individual puzzles, a progression of

which skills should be used in each puzzle, and high-level contraints over the progression. In

this context, the domain model takes the form of the set of skills that each puzzle may or

may not require to be solved. Following on from the previous chapter, this representation of

domain models differs from the one will be generating from Chapter 4 onwards, but serves the

same function: serving as a formal represention of expert sovling strategies for the problem

domain. Thus, a progression essentially defines which skills from the domain model are

1http://social.bioware.com/page/da-toolset
2In a very interesting exception to this trend, fans sometimes recreate visual progression plans for popular
games, such as Piotr Bugno’s detailed outline of the story and level progressions for Portal 2 : http:
//www.piotrbugno.com/2012/06/portal-2-timelines/

http://social.bioware.com/page/da-toolset
http://www.piotrbugno.com/2012/06/portal-2-timelines/
http://www.piotrbugno.com/2012/06/portal-2-timelines/
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required by each puzzle.

Our focus on tools for designers contrasts with current trends in game design automation

research. Many projects aiming to reduce designer burden offer fully automatic generators

for individual levels, often focusing on optimizing a fixed metric for the quality of the level

[132]. These systems are not designed to optimize the relative placement of levels within a

progression. Other fully automated generators explicitly take user-configurable constraints

as input [109, 117]. These generators are directable down to a fine scale but still require

an external progression plan. Zook et al. [140] describes a system for fitting a progression

of generated challenges in a training game to an ideal player performance curve; however,

the system requires all design input to take the form of formally modeled properties such

as evaluation functions and causal coherence constraints. We are interested in allowing the

designer input at all scales, so fully automated methods will not suffice. Mixed-initiative

design tools, such as Tanagra [121] and SketchaWorld [115], pair generative techniques with

an interactive editing interface that allows the human and machine to take turns editing a

shared level design. Such tools help the designer prototype new ideas and check constraints

for quality assurance while still allowing designers to craft levels with subtle properties that

are difficult to formalize. These tools focus on creating single levels, whereas we want to

create a tool that allows designers to work at multiple scales. However, we follow similar

design process pattern for the problem of designing coherent progressions of detailed levels.

Effective progression design tools could provide valuable assistance to the same expert

designers who would normally have designed levels without such support. We expect that

they would be almost required for very large, complex progressions where manual exploration

becomes intractable. More importantly, however, they would open up possibilities for end-

user progression design. Consider an experienced teacher who wants to directly manipulate

which concepts will be used in a progression tailored to their class. They might prefer that

the tool automatically generate the relevant challenges at the scale of individual puzzles

everywhere except where one or two key levels should visually resemble examples previously

shown in class. This property is unlikely to be supported by any fully automated system.
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In this chapter, we discuss the requirements of a progression design tool, and present our

prototype implementation for the educational game Refraction, illustrating its utility through

several case studies. We expect that these ideas might be explored in domains outside of

games such as interactive programming tutorials or the education domains targeted in later

chapters of this thesis. The work presented in this chapter makes the following contributions:

• We identify the need for progression design tools and describe their impact with respect

to current practices.

• We sketch a general architecture for progression design tools, including the use of

generative techniques on a per-level basis where available.

• We present a prototype implementation of our design tool, attached to our own active

design project, Refraction.

2.2 The Game Refraction

Before describing further background or the technical details of our system, we describe

Refraction, the application used in both this and the following chapter. In Refraction,

players solve spatial puzzles by splitting virtual lasers into fractional amounts. Each puzzle

is played on a grid that contains laser sources, target spaceships, and asteroids which obstruct

lasers, as shown in Figure 2.1. Each target spaceship requires a fractional amount of laser

power, indicated by a yellow number on the ship. The player can satisfy the targets by

placing pieces that change the laser direction and pieces that split the laser into two or three

equal parts. All targets must be correctly satisfied at the same time to complete the puzzle.

Although Refraction was built to teach fractions to schoolchildren, it has found popularity

with players of all ages and has been played over one million times. Refraction is (at the

time of writing) freely available and can be played by anyone with a web browser.

The game consists of a sequence of puzzles in which the player must direct lasers into

targets, a task that requires both spatial and mathematical problem-solving skills. The game

relies primarily on the quality of puzzles to engage players. The original version of Refraction

contains 61 puzzles that game designers (including the author) created by hand over many
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Figure 2.1: A level of Refraction, a free educational math game for which our tool was
targeted. Over multiple years, the creators (including the author), continued to release new
versions of the game with new content or even new mechanics. This motivated the need for
a progression design tool.

dozens of hours. As the player progresses, the puzzles gradually increase in difficulty through

the introduction of new concepts, such as benders, splitters, combiners, multiple sources, and

multiple targets. The puzzles also increase in difficulty by combining base concepts together

in way that necessitates more complex search processes, such as puzzles that require bending

a laser clockwise and then counterclockwise to circumvent an obstacle, or puzzles that require

splitting a laser into halves and then into thirds in order to produce one sixth. Describing

a player’s exact solution process for Refraction is very difficult, as there are many different

procedures that may lead to the correct answer. Furthermore, there are often multiple

configurations of pieces that can solve a puzzle correctly. Although most of these solutions

are slight positional perturbations of other solutions, solutions can also differ in qualitative

ways. When the network of laser beams is examined as a graph, different solutions may
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involve different connectivity patterns or even omit different sets of pieces from usage. For

this reason, we cannot directly model solutions as unique sequences as in previously existing

frameworks [3].

Though at the time this research was done Refraction had already been released, its

creators continued, for years, to develop new content (puzzles and progressions) for the

purpose of various research experiments or adapting the game to different age groups or

audiences. This often included, for instance, testing brand new mechanics. This is one of the

factors creating a strong need for tools that allow designers to effectively and rapidly explore

and iterate level progression designs; designers are not always simply creating a brand new

game, but often are adapting or iterating on an existing game by adding new material.

2.3 Current Practices

Game developers have created a wealth of guidelines and best-practice suggestions for cre-

ating effective level progressions in games. In this section, we review current practices and

discuss which aspects our system aims to improve. These practices are not well-documented,

and there is not a clear accepted plan for tackling these challenges. Industry magazines such

as Gamasutra3 archive articles and discussions on game development written by industry

members, from which we draw our information.

2.3.1 Level Progressions

Many games consist of a sequence of distinct elements (e.g., levels, stages, challenges, scenar-

ios or puzzles) that the player encounters. We call this sequence a progression. Some games

(including Refraction) impose a total ordering on this sequence; players must go through

levels one after the other. However, many games’ progression elements can be explored in a

less restricted order; game designers call these non-linear games, though they still use the

term progression to describe the player’s progress through partially-ordered content. Our

3http://gamasutra.com

http://gamasutra.com
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tool focuses on games with a total ordering of levels (i.e., linear games), though many of

the ideas presented here also apply to non-linear games. In Refraction, the elements are the

individual puzzles (involving 2–5 minutes of play), and the progression is the entire sequence

of puzzles (2–5 hours of play). There are many ways to discretize a game progression; puzzles

in Refraction are very short, discrete units so make a reasonable choice. Games with larger

discrete units or no obvious discrete boundaries may make other choices about what counts

as a unit of progression.4

In this thesis, we will generally refer to the individual elements as levels. Levels cannot

be designed entirely in isolation; how they relate to each other is critical for effective game

design. Much of the effort spent during the iteration process focuses on altering individual

levels to improve the overall progression.

As a result, game design often happens at multiple scales. At a broad scale, designers

create a progression plan, which documents the features they want each of their levels to

have. These features might include, for example, which mechanics appear in a level or which

key dramatic events occur in the game’s narrative for a story-oriented game. In Refraction,

there are several different types of pieces the player may use, such as bending pieces, splitting

pieces, and adding pieces. The pieces required to solve any particular level are a feature

we consider during the design process. At a narrow scale, designers are editing the levels

themselves, trying to craft levels that have the complex properties they desire.

There are many design considerations when creating progression plans. For example,

many games introduce different mechanics slowly and deliberately to allow the player to learn

each of them without becoming overwhelmed. Game designer Dan Cook associates these

mechanics with skill atoms [33] and suggests diagramming the dependence between atoms to

better understand how a game works.5 In many cases, the introduction of a new skill atom

4Games may not even have a good single definition of a level. While a two-tiered view of levels as atomic
units within games is reasonable for Refraction and a useful simplification for this work, other, particularly
larger games might be better thought of as several layers of progression over finer and finer elements. We
do not handle such complexity here but many of the ideas can be applied to such a setting.
5The theory of skill atoms (and others used in the industry) are created by practicing game developers.
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may depend on the player having previously mastered another. For example, in Nintendo’s

Super Mario Bros., the player should learn to jump before they can learn to jump on an

enemy. Similarly, overusing a certain atom can lead to burnout, and avoiding this requires

additional constraints between levels to be checked. In Refraction, we wish to introduce

pieces in a particular order and pace. Skill atoms may also have intra-level considerations:

in Refraction, for example, some types of pieces cannot be used unless another type of piece

is present in the level. For the purposes of this dissertation, we can view skill atoms as the

elements that make up the domain model of a game: the set of all possible skill atoms a

player might learn represents the expert solving strategies for the game.

Another important design consideration of progressions is pacing. Pacing describes how

elements such as complexity, difficulty, and intensity vary over the course of the game. Game

designer Jenova Chen writes [32] about how Csikszentmihalyi’s concept of Flow [35] applies to

game progressions. If the difficulty increases too quickly, players can become frustrated; too

slowly, they become bored and disengaged. Many articles have been written on Gamasutra

analyzing and discussing techniques for effective game pacing 6.

2.3.2 Design Practices

Designers understand the value in explicitly planning their games’ progressions. Progression

design considerations and progression plans are often sketched out in a design document

or whiteboard before production of levels. Designers have written articles endorsing plan-

ning game progressions before production, writing that teams that do not explicitly create

progression plans often end up redoing work after user testing reveals problems with their

While sometimes (as in this case) inspired by research results, these theories are typically not rigorously
supported. Nevertheless, both because they are used in practice and because there is not a lot of rigorous
work on player skill development, theories like skill atoms are suitable representations of domain models
for this system. The work in later chapters on RuleSy draws its inspiration directly from research in
educational psychology rather than mimicking existing praxis.
6e.g., http://www.gamasutra.com/view/feature/134815/ or http://www.gamasutra.com/view/

feature/132415/

http://www.gamasutra.com/view/feature/134815/
http://www.gamasutra.com/view/feature/132415/
http://www.gamasutra.com/view/feature/132415/
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progressions, resulting in a worse final product7. However, the progression may change

greatly during production, user testing, and iteration of levels; levels and mechanics may

be reordered, or mechanics may be dropped entirely or new ones added. So while plan-

ning progressions beforehand is very useful, if left unaltered, the progression plans become

increasingly inaccurate. Although game developers frequently spend great effort creating in-

house editors and other authoring tools for their games8, to the best of our knowledge, they

do not create editors for their progression plans that automatically sync with their levels.

For designers to continue to work at this broad scale during development, they must first

evaluate the current progression manually, a significant task9. After production, sometimes

developers (or even players) recreate visualizations of the progression realized in the final

game. While these may be used in post-mortem analysis, they are still created mainly by

hand, and are of little utility for design of that game, since it has already been published and

is unlikely to undergo large changes. Integrating an up-to-date progression plan as part of

the standard editing environment could help the designer more effectively work at multiple

scales.

Because the information about the progression plan is cumbersome to keep in sync with

the actual level progression, ensuring that the current levels meet all progression design

considerations is an expensive, error-prone task. Edits to levels frequently change their

properties in ways which may, for example, disrupt desired pacing, or introduce game me-

chanics too quickly or in the incorrect order. If not noticed by the designer, these problems

will eventually be discovered in user testing, a relatively expensive resource. Automated de-

tection of these problems may save time and effort by finding issues quickly, without designer

effort.

We expect having the ability to rapidly explore different progression plans would enhance

7e.g., http://www.gamasutra.com/view/feature/3848/
8For example, players can create complex mods and scenarios using Starcraft 2 ’s in-house level editor:

http://us.battle.net/sc2/en/game/maps-and-mods/
9Recommendations to do just that come from http://www.gamasutra.com/view/feature/132256/

http://www.gamasutra.com/view/feature/3848/
http://us.battle.net/sc2/en/game/maps-and-mods/
http://www.gamasutra.com/view/feature/132256/
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the design process. However, if the designer wishes to make a minor adjustment to the

progression, say moving the introduction of a mechanic to a later point in the game, this

might require significant modifications to existing levels. While a large portion of game

developers create level editors to help author levels, these adjustments are still expensive to

make. Because of this, designers can be limited in how easily they can explore the design

space.

Current design practices result in several problems we wish to overcome in the design

of our system. Designers are not able to easily explore progressions because level authoring

is time-consuming. Designs for progressions plans are often abandoned after level creation

begins because they are too cumbersome to keep up-to-date. As a result, level edits often

introduce problems that are not discovered without significant inspection and user testing.

2.4 Progression Design Tools

In this section, we formalize our design problem and discuss our goals for an effective game

progression design system.

2.4.1 Definitions

We will use levels, progressions, and progression plans as defined previously. Each level has

several properties, features that the designer cares about. Examples include which game skills

(i.e., elements of the domain model) are used in a particular level, or whether a particular

narrative event occurs in a level. There are often a huge number of possible levels that

share a particular set of properties. Likewise, there are many progressions that conform to a

particular progression plan. The designer may have particular considerations for their game’s

progression, such as pacing or the ordering in which mechanics are introduced. We refer to all

of these considerations definable at the level of the progression plan as progression constraints

(or just constraints). We use the term (loosely) in the sense of optimization problems:

the designer has a set of constraints in mind, and the design problem is to generate a

progression best satisfying those constraints. Constraints may be hard (never to be violated),
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Editing
Constraints Editing 

Plans Editing 
Levels Playing 

Levels

Broad scale Narrow scale

Figure 2.2: The ideal workflow for our system (a waterfall-like pattern). Designers must
iterate at multiple scales, so our tool aims to allow the designer to move freely between
broad and narrow-scale editing.

soft (flexible in exchange for satisfying other constraints at some cost), or unmodeled (not

tracked by the tool). Again, there will generally be many progression plans that equally

satisfy a particular set of constraints.

2.4.2 Goals of the Design Tool

The tool is intended to be a full-fidelity game editor and for authoring the final levels seen by

players. The system should support rapid iteration and exploration at multiple scales of the

design: progression constraints, progression plans, and individual level designs. Designers

should be able to playtest the current progression. Figure 2.2 demonstrates the desired

workflow for the system. Many constraints and properties can be formally modeled, so we

would like to draw on advances in procedural content generation to automate generation and

analysis of content where possible. Level generation is not an option for all types of games

(and can be too costly to implement even when it is), so it is an optional component of our

tool. It is important to note that many critical design considerations, such as the moment-to-

moment difficulty or affective impact on players, are subjective or cannot be easily modeled.
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Concept Description
Bending Must use bending pieces
Splitting Must use splitting pieces
Adding Must use adding pieces
Blockers Must contain obstructive pieces
Wasted Laser Leaves some laser beams unused
Crossed Laser Laser beams are unavoidably crossed

Table 2.1: A sample of the properties we model for levels in Refraction. These properties
are binary, describing whether or not a particular gameplay concept is required to solve a
level. These concepts, taken together, constitute the domain model for this application.

Thus human editing must be available at all scales, so the system should integrate existing

level editors that game designers already create. As the designer changes from broad-scale

progression planning to narrow-scale level editing and back, the system should automatically

keep other parts updated: edits to levels should be reflected in the progression plan, and

edits to the plan should notify the designer if plan-level constraints are violated.

2.5 Application to Refraction

To ground this discussion about progressions, levels, and constraints, we discuss how these

ideas apply in the design of our game, Refraction. In this section, we discuss progression

constraints and level properties specific to Refraction used in the proof-of-concept implemen-

tation of the tool as well as which game-specific components we needed to provide for the

implementation. Figure 2.3 shows screenshots from our prototype intended to demonstrate

how a designer might control and view plans and levels. We delay discussing the system

components until the next section.

2.5.1 Constraints and Properties

All level properties we model in this prototype describe whether a particular gameplay con-

cept (or skill atom, to use Cook’s [33] terminology) is required to solve a level. The set of all
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Figure 2.3: Screenshots of two of the three browser-based editing environments of our tool,
each for editing the game at a different scale. On top is the progression plan editor, used for
directly manipulating the plan. On the bottom is the level editor, which embeds Refraction’s
custom editor. There are additional views for editing constraints and playtesting.
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possible concepts/skill atoms constitutes the domain model for this game. As mentioned in

the previous chapter, this is a much simpler representation than the domain models we will be

automatically generating in later chapters. Thus, we will use the term concept to refer to the

elements of the domain model rather than a term such as strategy to highlight this simplicity.

Table 2.1 lists a sample of these concepts. Because we currently only model concepts, all of

our level properties are binary, describing whether a concept is required. Many additional

properties have not yet been modeled, such as how closely the pieces must be placed together

in all possible solutions. Some cannot be directly modeled, such as whether a level is fun or

aesthetically pleasing. Though not tracked by our tool, these can still be addressed through

manual edits to level designs. We have implemented four types of progression constraints,

described below.

Prerequisites

Prerequisites are inter-level constraints that define a partial ordering over the introduction

points of the concepts (which must be realized by some total ordering in the progression).

For concepts A and B, if A is a prerequisite of B, then the level of A’s first appearance must

precede the level in which B first appears. For example, we want to introduce pieces that

bend the laser before introducing pieces that split the laser.

Corequisites

Corequisites are intra-level constraints on which concepts can appear together. A is a coreq-

uisite of B if A must show up in any level that has B. For example, one concept is to require

that the laser be looped around to cross itself. This is only generally possible if bending

pieces are available. Thus, “Bending” is a corequisite for “Crossed Laser.”
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Concept Count

For each level in the progression plan, we compute an illustrative proxy measure for “level

intensity” (a term often occurring in other designers’ progression plans) as a count of the

concepts that are in the level. Although this metric does not correspond directly with real-

world difficulty, it is nevertheless useful for controlling pacing of the progression at a broad

scale with a few quick adjustments. The constraint assigns target number of concepts for

each level. Our interface allows control via a spline editor, as seen in Figure 2.5.

Concept Introduction Rate

The concept introduction rate constraint controls the rate at which new concepts are intro-

duced, describing, for each point in the progression, the number of concepts that should

have been introduced by that point. This is an equality constraint: the progression must

introduce at precisely the rate given by this constraint. This constraint, expressed via spline

editor, can be used to ensure concepts are introduced at a pace allowing the player to master

one before proceeding, as well as roughly showing how the complexity of the game changes

at a glance.

Clearly, these concepts are specific to Refraction. However, the progression constraints are

quite general. Given another game’s set of gameplay concepts, we imagine that prerequisites

and corequisites will still be meaningful for shaping progression plans. The designer could

specify constraints that apply to properties related to categories other than gameplay, such

as aesthetics. For example, a designer might want to specify that aesthetic properties like

background music and graphical tileset should change in groups, corresponding to movements

to different places in the game’s fictional world.

2.5.2 Game-Specific System Components

Using these particular properties for level generation and analysis in Refraction requires a

subtle technical approach. Ensuring that a concept is required to solve the level entails
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checking that all possible solutions of the puzzle (there are generally many) use the concept,

a computationally difficult problem. For example, in a level in which the player is expected

to split a laser in two then later add it back together, careless design might enable the player

to use only bending pieces to bypass the splitting and adding altogether. Smith et al. [116]

developed a level generator (with Refraction as the example application) that can enforce

this type of constraint on its outputs. The generator uses answer set programming (ASP),

a declarative constraint-programming technology, to ensure that specified concepts must

be used in all possible solutions [44]. In addition to reusing this generator in our system,

we extended it to use the same formal game model to determine if a designer-altered level

requires each gameplay concept. This level analyzer is used to update the progression plan

after levels are manually edited.

We created a progression plan generator using ASP’s ability to solve constrained optimiza-

tion problems. Progression constraints (e.g., prerequisites) are expressed as soft constraints

and manual edits locked by the designer as hard constraints. Soft constraints are imple-

mented with an integer-valued penalty function. The generator searches for plans satisfying

all hard constraints with the minimal penalty for soft constraints; this problem is an instance

of the weighted MaxSAT problem [17], in which we must satisfy a set of hard constraints

while maximizing the weighted-sum of a set of soft constraints. This problem can be solved

by our answer set programming tool. We include additional soft constraints that add vari-

ation to the plan by penalizing repetition. We implemented (in Javascript) a corresponding

analyzer that, given a progression plan, checks for violated constraints.

2.6 System Description

In this section we describe in detail each of the system components we built for our Refraction-

based prototype. For each component, we discuss its role and how our implementation works.

Some of our implementations of these components are game-specific, while others could be

directly reused for other games. Of course, all parts of the system can be extended or

replaced in the interest of better supporting the designer. Figure 2.4 illustrates how the
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Figure 2.4: The pieces of our system.

Cylinders are models. Ovals represent editing/viewing interfaces that correspond to the
four elements of the workflow outlined in Figure 2.2. The square components are the

automated parts that ensure consistency across scales.

system components fit together.

2.6.1 Model

The model that the tool manipulates consists of three parts, which directly correspond to

the scales of the workflow: the progression constraints, the progression plan, the progression

itself (the sequence of concrete level designs). The designer can also output the playable

game from the tool.

2.6.2 Working with Progression Plans

The broad-scale iteration loop takes place between manipulating progression constraints and

the progression plan. The system has a set of user interface components used to display and

manipulate the progression constraints. Figure 2.5 shows the set used in our implementation.

These components are responsible both for letting the designer adjust the constraint param-

eters and showing whether the current progression plan violates these constraints. As the
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Figure 2.5: View of the two types of constraint editors in our implementation, which allow
manipulation of the various constraint parameters. Each interface type is used for multiple
constraint types, e.g., the grid is used for both prerequisites and corequisites. If the current
progression plan violates these constraints, the violations are displayed in red. On top, the
concept count graph shows us that several levels have too many or too few concepts. The
blue curve is the target, and the bars are the values of the current plan. On bottom, the red
cell of the prerequisite chart shows us that the “adding” concept is erroneously introduced
before the “splitting” concept. Blue indicates an active constraint (dark is manual, light
is inferred via transitivity), while dark gray indicates an unselectable constraint (e.g., two
concepts may not be mutual prerequisites).
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designer changes the constraint values, the component interfaces update to display whether

the current progression plan satisfies the new constraints.

The primary component for manipulating the progression plan is the progression plan

editor, shown at the top of Figure 2.3. For our implementation, this consists of a grid

showing level properties of each level, where the cells are the current value of the property

for that level. The user can directly manipulate this grid to change level properties. As the

designer edits the plan, the progression analysis component checks whether the constraints

are still satisfied. This is then reflected in the constraint editors in real time.

The designer manually manipulates the constraints and progression plan in order to pro-

duce a plan that matches their intent. However, the progression generation component can

be used for rapidly populating the plan and sampling alternatives. When manually activated

by the designer, the progression generator creates a new progression plan (overwriting any

existing) that best satisfies the current constraints.10 In order to prevent any manual edits

from being overwritten by generation, our system allows the designer to “lock” a particu-

lar level. The generators will not modify these levels or their corresponding entries in the

property matrix.

Thus, the full iteration loop for this scale is: set values of the constraints, optionally

generate a new progression, manually edit the progression, check whether these edits violate

any new constraints or unmodeled design criteria, repeat.

2.6.3 Working with Levels

The narrow-scale iteration loop involves manipulating the progression plan and the levels

themselves. The structure of components at this scale corresponds with the structure above.

First is the previously described progression plan editor. Like the constraint editors, manip-

ulation of the progression plan does not immediately change the levels below.

10As there are often many progression plans that achieve an equivalent score with respect to the stated
constraints, we have configured the progression generator to make liberal use of randomness in the interest
of exploring diverse solutions.
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The level editor is used for editing individual levels. Because levels are always game-

specific, a single-level editor must be supplied by the game’s developers. Developers must

also provide a level analyzer that computes the relevant design properties for each level. The

difficulty of producing such an analyzer scales with the subtlety of the properties checked:

determining if a level uses a particular piece or is set to use a particular graphical tileset is

easy, but determining the level of strategy needed to complete the level is harder. When the

designer edits a level, the level analyzer is used to immediately reflect the changes in the

progression plan. These changes are propagated further up to the progression constraints.

For the purposes of automation, the developers may optionally provide a level generator.

Though the designer could manually edit levels, certain games, including Refraction, have

generators that divert significant burden from the designer. The level generator, if it exists,

can be triggered by the designer to create levels that match the properties described in the

current plan. Any levels that are “locked” are not overwritten, so manually-tuned levels can

be preserved.

This iteration loop corresponds to the one above: edit the progression plan, optionally

generate levels, manually edit levels, check how the progression (and the progression con-

straints) changed based on these edits, repeat.

2.6.4 Testing the Game

The final component of the system allows for playtesting the levels directly. Thus the game

must have an interface that accepts new level progressions to be played immediately. In the

case of Refraction, since it is an online game, it can be easily launched from within the tool.

2.7 Evaluation

The implementation of the prototype system was intended for internal use by the authors

of the original publication [27]. We evaluate the general architecture and our game-specific

implementation through a set of case studies, exploring new design techniques that our

system enables. The first case study requires the game-specific level generator, but the
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others do not require such technology.

2.7.1 Rapid Exploration at a Broad Scale

Assuming the system has a level generator, this tool enables game designers to rapidly explore

different progression plans and test the plans in playable games. For example, consider a

scenario for Refraction early in the design phase of a new progression for a new, younger

audience. We do not know how this set of players will respond, so we wish to rapidly explore

and playtest several possible progressions. We might want to remove “addition pieces” from

the game entirely and avoid introducing the “crossed laser” concept (see Table 2.1) until

late in the progression. Our tool allows the designer to quickly sketch these modifications

into the progression plan, generate a new set of levels satisfying the plan, and test these

levels immediately. While these generated levels may lack some of the unmodeled properties

the designer desires, this is acceptable at an early stage of rapid exploration. The designer

also has the ability to edit the generated levels to suit their needs, which can be easier than

creating new levels from scratch. Previously, creating even an initial progression with the

key gameplay concepts removed would have entailed massive effort before the first round of

tests. An even stronger motivation for this use case is the situation where the designer wants

to modify an existing game by adding in one or more new mechanics. The cost of creating

an entire new set of levels that integrate the new mechanic is high.

This rapid exploration applies at the broader constraint scale as well. Suppose in Refrac-

tion we wish to add an additional prerequisite constraint that “laser crossing” must come

after introducing “splitting pieces.” The tool can automatically create a progression plan in

conformance with this constraint. It then populates a sequence of levels compatible with

that plan, allowing a game satisfying the new constraint to be played with minimal designer

effort. Without our system, the designer would have to first manually evaluate where the

existing plan failed, devise a new plan for an adjusted progression (in notes outside of the

editor), then create several new levels, either by hand or by manually configuring the level

generator. We expect this reduction in friction to enhance rapid prototyping of progressions.
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2.7.2 Automatic Detection of Problems during Iteration

As discussed, levels and progressions undergo a great deal of iteration during the development

process. One of the dangers of changes during iteration is breaking previously expressed

planning intents, both global progression constraints and level property constraints.

Consider an example in Refraction where, late in the development process, the designer

wishes to make a minor adjustment to the mathematical portions of the fifth level of the

progression. They exchange a “splitter piece” with two outputs for one with three outputs.

However, this extra output introduces what we call a “wasted laser,” or a laser that is not

used in the solution. ‘Wasted lasers” is one of the concepts controlled in the system and

is constrained via the prerequisite constraint to first appear after another concept, “crossed

lasers,” which has not been introduced by this level. This could be corrected by adding

additional pieces (a new target to absorb the extra laser), but may go unnoticed by the de-

signer. However, upon saving the change in our tool, the system will automatically update

the progression plan to reflect that wasted lasers appear in this early level. Since a prereq-

uisite constraint is now violated, the constraint editor highlights this problem to notify the

designer. The designer may then take steps to fix it: one option is moderately editing the

offending level. If the designer prefers to keep the level as-is, they can generate a new plan

for surrounding levels or remove this prerequisite constraint. We believe that this feature

can make managing large design projects easier by notifying the designer of automatically

detected problems.

2.7.3 Global Optimization of Progression Properties

A designer often needs the progression to satisfy many complex time-varying properties

simultaneously. For large progressions this task is difficult to do manually. For example,

suppose a designer for Refraction is trying to control the pacing of the progression. They

are interested in controlling aggregate properties: the number of concepts per level, and

the rate at which new concepts are introduced during the progression. The designer wants
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new concepts to be introduced at an even rate, but they want the number of concepts per

level to vary significantly between levels. These constraints are modeled in our system,

so the designer may directly edit curves (see Figure 2.5) to control the constraints. Our

system’s built-in progression generator can find the closest feasible solution through global

optimization. As the designer refines these curves, they can quickly see possible solutions

and adjust parameters appropriately. The designer may also rely on the fact that all design

changes that were manually introduced can be preserved through the optimization process.

We expect this to ease the process of creating progression plans that satisfy several complex

constraints.

2.8 Discussion

We believe that ideas from this system can be applied to a wide range of games. Some

components are game-specific, such as the level editor and generator. The others, particularly

those at the broader scale of progression constraints and plans, can be reused between games;

the pairing of our constraint editing interfaces with constrained optimization tools on the

back end are generic. The modularity of our framework allows it to be extended for new

games and for additional functionality. In this section we discuss some of the limitations

and some of the possible ways in which the system could be extended. We then discuss how

these ideas might be explored in other, non-game domains.

2.8.1 Limitations and Extensions

We have defined progression plans as a sequence of level properties. In our implementation,

these properties are binary values indicating whether a level contains a particular concept,

but more nuance is certainly possible and very likely necessary for practical applications.

For example, we may be concerned with how many bending pieces appear or the overall size

of the player’s solution. Having numeric knobs instead of binary values would enable the

designer to specify even more precise progression plans. For many applications, a designer

may be able to specify these concepts manually. For others, particularly skill-based games
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or educational domains, it is a daunting task to figure out a set of concepts that reflects how

players actually solve the challenges presented in the game. The following chapters in this

thesis, particular the RuleSy framework presented from Chapter 4 onward, was created to

tackle precisely this task.

The system is also extendable to address some aesthetic concerns; for example, we might

give the designer control of the average distance between pieces to allow them to create dense

or open-feeling levels. We have already explored constraints on symmetry, balancing, and

packing for Refraction levels, but elided those properties from the prototype presented here.

These new constraints are significantly more detailed than the current set and will require

new display mechanisms to make them easy to see and manipulate.

Our prototype supports only a linear progression, limiting its application to some games.

For example, in Nintendo’s Super Metroid, the player explores a large, nonlinear open world.

The player finds “power ups” in this world that unlock new abilities, allowing the player to

explore previously inaccessible locations. Therefore, the “progression” is defined over which

abilities the player has unlocked and which mechanics they understand how to use, rather

than a single number describing how many levels they have completed. While extensions

to the system to support other progression structures are plausible, most require finding a

natural visual depiction for such structures. Currently, our ability to generate progressions

and levels under hard and soft constraints exceeds our ability to present useful interfaces

that would allow a designer to guide these generators in directions that would satisfy some

external intent, so more research must be done to explore how to depict and interactively

manipulate these more abstract progression mechanisms.

Refraction is a game of relatively small scope, but we believe this system could be used for

much larger games. To remain tractable, one strategy would be to only model the most salient

properties of levels and solutions. If complex levels can be created by connecting detailed

tiles (e.g., pre-authored chunks of terrain in a 3D adventure game), then the representation

used in progression planning can remain discrete and visually manageable. Another strategy

would be modeling at additional scales. For Refraction it was feasible to work at two scales
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because puzzles are short enough to be treated as atomic objects. However, many games have

very large “levels,” such as the single-player campaign missions of real time strategy games

like Blizzard Entertainment’s Starcraft. While designers may wish to model progressions

over the entire game’s missions, the levels themselves are quite long, and the designer may

wish to model an “intra-level” progression of a single level, or perhaps even modeling the

progression over individual encounters within a level. Such progressions could be modeled

by hierarchically nested progression diagrams: scales for each encounter, mission, and overall

game.

We have supplied a small example of possible progression constraints, but they can be

extended or new ones introduced. Luckily, many progression constraints apply generally to

a broad class of games and so can be reused. This is in contrast with level constraints, which

are almost always game-specific. For example, many games are concerned with the order

mechanics are introduced, so our prerequisite constraint can be used in those games. Likewise,

many games require care with pacing, so a constraint dealing with how long concepts should

be practiced after introduction before moving on to new concepts would be generally useful.

The existing user interfaces for constraint editing can be repurposed for different kinds

of constraints. For example, in addition to prerequisites and corequisites, we might use the

same interface for constraints such as: mutual exclusion, where concepts A and B shall not

show up in the same level; sequential exclusion, where if A was used in a previous level, B

cannot be used in the current level; or sequential introduction, where A must be introduced

immediately preceding B.

Similarly, the spline editing interface can be reused for many designer-specified functions.

For example, we can model a sense of “scale” for Refraction levels by measuring the minimal

number of pieces required to complete the level. Our concept count constraint gives a very

primitive idea of level intensity, and as long as a designer can usefully employ edits of this

curve in place of lower-level tweaks, it is valuable. However, it would be desirable to use

a function more representative of real-world difficulty and player experience. Backing the

spline editor with more sophisticated functions, such as a learning rate derived from an
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externally-validated learner model, is an obvious and enticing avenue of future work.

Our system has basic support for preserving manual edits by “locking” entire levels as

fixed with respect to the generators, but better methods could be applied to make the tool

more useful. An obvious first step is allowing more fine-grained locking by locking only

particular concepts: for example, the designer may want to ensure that splitting shows

up in levels 2–5 but wants to allow the generator to make other decisions for those levels.

Allowing the generators to reorder existing levels or minimally modify levels while preserving

designer-specified features may also make the locking tool significantly more useful.

Finally, the generators and analyzers can be replaced as technology improves. Depending

on the game, many existing level generation technologies would fit in the system. While

answer set programming fit our game well for both level and progression plan generation,

we could explore many other optimization or planning techniques. For example, for level

generation, a game with continuous physics like Rovio Entertainment’s Angry Birds might

use a generate-and-test system that uses the game’s internal physics engine. Many relatively

simple techniques, such as making an approximate query against a database of previously

authored and annotated plans and levels, are likely to be fruitful as well.

2.8.2 Application to Other Domains

We believe these ideas can be explored in other domains beyond games. Here we propose

some potential applications of this system, looking at two other domains in closer detail.

Example Domain: Teaching Programming

As one example, we consider an interactive application that teaches programming, similar to

Codecademy.11 “Levels” in this domain are individual programming exercises. We speculate

a designer may be concerned with properties such as which programming concepts (e.g.,

recursion, conditionals) are explained or introduced in the exercise, or which concepts the

11http://www.codecademy.com
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user is assumed to already know. Another may be the complexity of the exercise, either by

number of lines of code required or whether certain library function calls are required. Other

properties are subjective in nature, such as the directness of suggestions given to find the

solution, the narrative used to give context to the user, or the visual layout of the exercise

in the application and access to related examples.

A designer may wish to ensure several global progression constraints over the exercises.

Concepts should not be used until an exercise where they are intentionally introduced. Com-

plexity should vary between exercises to prevent frustration or boredom. Concepts are re-

visited to give users sufficient practice, and should be recombined with other concepts; for

example, designers may wish for each concept to be used with at least three other concepts.

This problem domain shares many of the characteristics of our game design problem

(indeed, many of these concerns map exactly into Cook’s discussion of skill atoms) so it

should likely benefit from using a progression design tool. As most of our tool components

can be directly reused, the designers need only supply an editor for exercises and tools to

compute properties of crafted puzzles. For the computationally complex task of determining

if there are alternate solutions to a programming task that avoid the use of certain concepts,

program synthesis techniques could be used to search the constrained space of small programs

in a language that fit a specification [12].

Example Domain: High-School Algebra Problems

We consider creating a homework assignment containing a progression of algebra problems.

There are several level properties a curriculum designer may wish to control, some mod-

elable, others subjective: which algebraic concepts are used (e.g., factoring, cancellation,

distribution), how many steps a particular problem takes to solve, or whether the problem

resembles in-class examples. In Chapter 5, we describe our framework, RuleSy, for auto-

matically building a very detailed model of concepts and strategies used for solving algebraic

questions. A designer could use such a model with this progression tool.

We consider several progression constraints a designer might wish to enforce, such as
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the partial ordering of concepts (e.g., properties of roots before properties of logarithms).

Designers may want to introduce new concepts in isolation to allow students to master them

before combining them with others. They may also wish to ensure the supporting text for

each problem is thematically coherent with nearby problems.

More generally, we suspect that the progression designer could be useful for analysis of

the entire math or science curricula through 13 years of K–12 education, or design of a

problem-based learning course.

2.9 Related Work

There is a long history of creating design tools in HCI research. Many tools have been

created to support rapid exploration and prototyping at an early stage. Sketch-based tools

such as Silk [73] and Denim [81] allow the designer to sketch interfaces with a stylus. Suede

[66] explored the rapid creation of prototypes of speech-based user interfaces using wizard-

of-oz techniques. Similar techniques could be used to prototype progression design tools in

domains where automation similar to that which we built on is not yet available. In this

case, the ability to sketch in broad-scale properties of a progression (e.g. a target pacing

curve) and sample alternative plans is still useful even if per-level design is done by hand.

Systems like d.tools [55] support an iteration loop of creating, testing and analyzing

interface prototypes. Because user testing and iteration is critical when creating game levels

and progressions, our system also aims to support these kinds of iteration loops, but in a

manner specific to our domain.

Juxtapose [56] and Side Views [130] are examples that allow the user to quickly explore

alternatives to the current design. Our tools tries to support this through sampling randomly

generated alternatives under constraints, though adopting a literal side-by-side view could

be more effective.

Much work has been done using constraint solvers in user interfaces, such as Cassowary

[9] and the engine in Amulet [95]. In contrast to familiar applications of geometric layout

constraints on interface elements, many of our constraints are much more abstract in nature,



36

such as the nonexistence of shortcut solutions for a level that is supposed to introduce a

new gameplay concept. Even so, we strongly separate the definition of the constraint (as

driven by the interface of the design tool) from the back-end search technology used to find

satisfying solutions. Creating generators and analyzers for Refraction involved setting up

constraints and passing these to a domain-independent solver from the Potassco project [44].

There is also a rich history of work in mixed-initiative planning and collaboration tools.

COLLAGEN increased the ease with which users could create mixed-initiative planning

tools [107]. The framework specifies an interface with goals, recipes, and steps, to be im-

plemented by domain-specific planners. COLLAGEN would then provide a dialogue system

capable of conversing with the end-user, using the underlying planner. More generally, the

SHARED-PLAN architecture underlying COLLAGEN allows computer and human agents

to collaborate together in groups to satisfy goals, such as planning or interface design [47].

Our tool is more visually oriented, rather than relying on dialogue as a method of interaction;

in addition, we optimize directly while planning subject to constraints instead of requiring

recipes to search for solutions.

Mixed-initiative planners have also been used in other domains. NASA’s MAPGEN is

actively used to create daily activity plans for Mars rovers [22]. OZONE was designed to be

a mixed-initiative constraint-based planning framework with pluggable components and was

used to plan military resource allocation and transport tasks [123]. Our domain is different

in that designers must both create plans and levels.

2.10 Conclusion

In this chapter, we have identified the potential utility of mixed-initiative progression design

tools for games, described how such systems could work, and created an implementation

to be used with our own deployed game. Progressions and levels are both very difficult to

design, and it is arduous to juggle all design considerations while working at multiple scales.

For several types of games, many of these considerations can be formally modeled, so we

can use computation to automate portions of the process. At the same time, many design
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concerns are completely subjective, so there is a strong need to retain human involvement

in the creation of final progression plans and levels for deployment. We expect that game

progression design tools can significantly enhance the game creation process. There are many

other domains where interactive experiences are composed of scaffolded episodes. Practically

all educational and general training environments fit this paradigm to some extent. We

describe how given a breakdown of key concepts and the ability to automatically generate

levels from parametric specification other domains directly map to our progression design

process.

This tool is built upon a domain model, in this application represented as a set of the

concepts and skills used by players to solve challenges in a game. In our example, we

hand-picked a simple model to illustrate the proof-of-concept tool. In practice, this set of

concepts should be one that reflects the skills actually used in the game. Figuring this is out

is a substantial challenge, and later chapters of this thesis explore solving this design task

automatically.

There are several areas of future work, in addition to potential extensions mentioned

earlier. Experience with this prototype has already prompted a number of game-specific

and general directions to explore next. For example, beyond adding more details to the

progression plan (properties and curves), we want to investigate how concrete patterns dis-

covered in the level editors (such as a commonly used cluster of pieces) can be upgraded

into plan-scale properties without additional programming. Meanwhile, broader user studies

are required to determine the effectiveness of this model before we can make progress on

deploying progression design tools for an audience beyond experienced level designers. More

study is needed to discover how well this system applies to a wider class of games. Finally,

we propose exploring these ideas in other, non-game domains.
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Chapter 3

AUTOMATIC GAME PROGRESSION DESIGN THROUGH
ANALYSIS OF SOLUTION FEATURES

The previous chapter introduced a novel system and user interface for designing progres-

sions built on top of a formal domain model of a game’s skills, using the educational math

game Refraction for its example implementation. In this chapter, we explore taking the de-

signer out of the loop entirely, and generating a full game and its progression automatically.

The motivation for such a tool is being able to create games that adapt to the player; for ex-

ample, with an educational math game, we are interested in targeting content towards player

skills to maximize learning. We present a system for an adaptive, automatically generated

version of Refraction we call Infinite Refraction, along with a in-the-wild user study sug-

gesting that the generated game has comparable engagement to the original, hand-crafted

one. A large portion of the effort in building this system was spent creating the domain

model used; the following chatpers address this challenge with a framework, RuleSy, for

automatically creating models that could be used in applications like the one presented here.

Portions of the chapter are reused from or based on prior technical publications [25].

3.1 Background

For many types of games, engagement is closely linked to the quality of the level progression,

or how the game introduces new concepts and grows in complexity as the player progresses.

Several game designers have written about the link between level progressions and player

engagement. Game designer Daniel Cook claims that many players derive fun from “the act

of mastering knowledge, skills and tools,” and designs games by considering the sequence of

skills that the player masters throughout the game [33]. Others have written about Flow
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Theory [35] and the importance of engaging players by providing content that appropriately

matches players’ skill as it grows over time [8]. As the previous chapter established, producing

game content with an effective progression is difficult to do and is typically done by hand.

As a result, designers may be reluctant to revise their progression designs as new information

about what players find interesting or challenging becomes available.

One goal of game design research is end-to-end automation of the game design process.

We take a step towards this goal through a framework that reduces the need for explicit

expertise in learner modeling. We aim to enable a different method of game design that

shifts away from manual design of levels and level progressions, towards modeling the solution

space and tweaking high-level parameters that control pacing and ordering of concepts. A

key component of many games is the combination of basic concepts. What is interesting

and engaging is not just the individual game rules and interactions, but how the progression

combines them in increasingly complex ways. There is a combinatorial explosion in the

number of ways to mix basic concepts, which, while allowing for many deep and interesting

game experiences, makes creating progressions a challenge. Theories such as Vygotsky’s

zone of proximal development [137] motivate introduction of concepts at a controlled rate

to allow the player time to master them. We propose that tracking and seeking mastery of

combinations of basic elements of solutions is an effective way to organize and control the

design space. In this setting, the learner model is defined with respect to the domain model.

That is, the domain model represents the skills required to solve puzzles, while the learner

model represents how well a player has mastered those skills.

Andersen et al. [3] proposed a theory to automatically estimate the difficulty of procedu-

ral problems by analyzing features of how these problems are solved. Procedural problems

are those that can be solved by following a well-known solution procedure, such as solving

integer division problems by hand using long division. The system treats these procedures

as computer code and the human solvers as computers. Given such a procedure and set of

problems, the system considers the code paths that a solver would follow when executing the

procedure for a particular problem, for example, how many times a particular loop must be



41

executed or which branch of a conditional statement is taken. We call these paths procedural

traces. Using this information as an estimate of difficulty, the framework specifies a partial

ordering of these problems. While the previous framework can analyze existing progressions

and generate problems, it cannot synthesize full progressions. This is mainly because An-

dersen’s framework does not account for pacing. In contrast, our system allows a designer to

control the rate of increase in complexity, the length of time spent reinforcing concepts before

introducing new ones, and the frequency and order in which unrelated concepts are combined

together to construct composite problems. Furthermore, Andersen’s system can only handle

highly-constrained procedural tasks. Games often have open-ended problem structures with

many valid solutions and solution methods, necessitating an alternative approach.

In this chapter, we extend the ideas from procedural traces to automatically synthesize

an entire progression for a popular puzzle game, Refraction. The game Refraction has no

unique or preferred procedure for solving each puzzle. Therefore, we extend the partial

ordering theory of procedural traces to work in a non-procedural domain. We present a

system that controls the pace at which concepts are introduced to synthesize a large space

of puzzles and the full progression for the game.

We evaluated whether this system can produce a game able to engage players in a real-

world setting. We ran a study with 2,377 players and found no significant difference in

time played compared to the original, expert-crafted version of the game. This original

version found success and popularity on free game websites (played over one million times),

and thus these empirical results suggest our framework captures important aspects of game

progression design. Our long term goal is to extend this work to use data to optimize the

progressions for each player.

3.2 System Overview

We first summarize the components of our system, then go into detail about each component

in subsequent sections. Our system is built for the education math game Refraction, detailed

previously in Section 2.2.
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In this chapter, we use the game-terminology levels to mean any completable chunk of

content, such as an single puzzle in Sudoku, a math problem in a workbook, or a one of

the stages in Nintendo’s Super Mario Bros. For our application, Refraction, a level is an

individual puzzle. A level progression is a sequence of levels that create an entire game.

In order to arrange a given set of levels into a progression, we need to be able to extract

features from the levels that can be used to create an intelligent ordering. In this chapter,

we propose the use of solution features, which are properties of the solution to a level. In

Refraction, a solution is a particular board configuration, and the features are deduced from

the structure of the board pieces in the solution. The techniques we describe, while containing

game-specific components, can be applied to a variety of games.

Of course, before we can automatically arrange levels into a progression, we first have be

able to create individual levels automatically. Creating levels is entirely game-specific, and

we discuss the techniques used to create Refraction levels for our study.

Finally, the system must have a method for using the solution features to arrange levels

into a progression. The method we present treats features indistinguishably and therefore

applies generally to any game for which solution features are computed.

3.3 Extracting Solution Features

Andersen et al. [3] proposed the use of n-grams (sub-sequence of length n from a larger

sequence) to abstract procedural traces, allowing the creation of a natural partial ordering

on traces. In this section we describe how we extend this to extract features from non-

procedural games such as Refraction.

3.3.1 Procedural Traces and n-grams

We begin with a review of traces and n-grams for procedural domains. Consider the algorithm

for subtraction detailed in Algorithm 3.1. We indicate traces through this algorithm as

sequences of letters; these letters are output when the program executes commented lines in

the above procedure. A few problems and their traces are shown in Table 3.1.
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1: procedure Subtract(p, q)
2: for i := 0 to len(p)− 1 do . Each digit (D)
3: if i < len(q) then . Subt. digit present (S)
4: if q[i] > p[i] then . Must borrow (B)
5: p[i] := p[i] + 10
6: j := 0
7: while p[i+ j] = 0 do . Zero (Z)
8: p[i+ j] := 9
9: j := j + 1

10: p[i+ j] := p[i+ j]− 1
11: a[i] := q[i]− p[i]
12: else . Copy down (C)
13: a[i] := q[i]

Figure 3.1: A procedural algorithm for subtraction, with labels at the key points. We can
characterize the skills required to solve a problem by looking at the trace of labels when
executing the procedure on that problem.

Given a problem and its trace, the n-grams of a trace are the n-length substrings of the

trace. For example, in the trace ABABCABAB, the 1-grams are {A,B,C}, the 2-grams

are {AB,BA,BC,CA}, and the 3-grams are {ABA,BAB,ABC,BCA,CAB}. Intuitively,

1-grams represent fundamental concepts, and higher-value n-grams represent the sequential

interaction, not captured by 1-grams, of using multiple concepts together. n-grams are

intended as a method for computing comparable features for traces. We can represent a

problem by the n-grams of its trace and use this to compare problems’ relative complexity.

We typically will only compute n-grams up to a small, fixed n, such as 3 or 4. The choice of

n is a trade-off: a small maximum n will not capture salient interactions between concepts,

but a large n will distinguish problems with only a slight difference in traces.

3.3.2 Solution Features in Refraction

Because Refraction does not have a preferred solution procedure, we cannot directly apply

n-gram analysis. Rather than attempting to describe the procedure players use, we model
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Subtraction Problem Trace
1− 1 DS
11− 11 DSDS
11− 1 DSDC
11− 2 DSBDC
101− 2 DSBZDCDC

Table 3.1: Example subtraction problems used in elementary-school mathematics and their
corresponding traces.

features of solutions (henceforth, solution features), that players necessarily encounter. That

is, for this application, the domain model is a set of solution features. As mentioned in

the introduction of this dissertation, this is a simpler representation of domain models than

we will be generating in the following chapters. For now, we assume that every puzzle has

a reference solution that is representative of all possible solutions. In the section on level

generation, we describe how we can extract features even though Refraction puzzles often

have many valid solutions.

As the players are forced to connect the pieces into a graph, one obvious source of

solution features is the reference solution’s laser graph, which we call the solution graph.

As the analogue to n-grams for procedures, we use graphlets, which are small connected

non-isomorphic induced subgraphs of a larger graph [105]. Figure 3.2 shows some example

Refraction levels to explain graphlets. In Refraction, graphlets on the solution graph capture

ideas such as the following: an example of a 1-graphlet is that a two-splitter is used; an

example 2-graphlet is a laser edge linking a bender and a two-splitter; an example 3-graphlet

is a length-3 chain including two two-splitters and a three-splitter.

While the solution graph captures many features of the solution, particularly the spatial

components, our domain model includes additional graphs to capture other mechanics. For

example, we can construct a graph whose nodes are the fraction values of the source and

target pieces, where two nodes, source node s and target node t, are connected with an edge
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1/1

1/2 1/2
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1/41/4
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Figure 3.2: Three example levels for Refraction, to illustrate solution features and graphlets.
When considering the solution graph, levels (a) and (b) have the same 1-graphlets. They
differ in 2-graphlets: (a) has a splitter-target chain, while (b) does not. They differ on several
3-graphlets; notably, (a) has a splitter branching into a bender and target while (b) has a
splitter branching into 2 benders. However, the solution graph is insufficient to distinguish
(a) from (c). We need the additional math graph to capture differences between them with
graphlets.

if, in the reference solution, s has a path to t. We select graphlets on both this auxiliary math

graph and the solution graph. Although we do not claim to understand how the spatial and

mathematical challenges interact when players solve the puzzle, by using multiple graphs we

are able to capture those features we find relevant for progression design in sufficient depth.

3.4 Automatically Generating Levels

We applied the level generation process described by Smith et al. [116] (also used for genera-

tion in the tool presented in Chapter 2) to generate a large and diverse database of puzzles. In

each puzzle, we enforced the constraint that all potential solutions to the level share the same

solution graph. The generation process additionally produces a reference solution. Since all

solutions are guaranteed to share the same graph, we can safely extract general solution

features from the single reference solution produced by the generator. This analysis could

be extended to puzzles with multiple, significantly different solutions by considering which
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subset of features must show up and which optionally may be used to solve the problem, but

we omitted this for sake of simplicity.

3.5 Creating a Progression

In this section, we describe how to take a set of levels (described by solution features) and

create a full progression. We use the term n-grams in this section, but everything described

applies equally to graphlets.

Given a diverse set of a problems and their traces, the solution features suggest a natural

partial ordering of these problems, described by Andersen et al. [3].To summarize, given two

levels L1 and L2, L1 is considered conceptually simpler if, for some positive integer n, the

set of n-grams of L1 is a strict subset of the set of n-grams of L2. Other approaches use data

collected from players to determine the complexity relationships between problems (e.g., [40]).

However, for spaces with a large set of possible traces, learning all these relationships from

data or specifying them manually can be infeasible. Our technique uses the structure of the

solutions to compute these relationships without data, which has been shown to correlate

with users’ perception of difficulty in the domain of an educational algebra game [3].

Our system must have a sequencing policy for creating a full progression, allowing the

designer to control pacing and ordering. A simple approach would be to traverse the graph of

partially-ordered problems in an order consistent with a topological sorting of the graph. This

would ensure problems would be introduced before any of their (more complex) descendants.

This approach has several drawbacks. It does not allow for control over the rate at which

complexity increases or control over the balance between when new concepts (1-grams) are

introduced versus combinations of concepts (2-grams and 3-grams). Moreover, this method

would attempt to show every problem. Games cover a deliberately chosen subset of the

entire (combinatorily large) space of possible problems, but this method lacks an intelligent

way to decide which subset to use. As discussed, rather than trying to fully order a set of

problems, we instead will use a large set of generated levels as a library from which to select

an appropriate progression.
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Systematically Tracking and Introducing n-grams

To create progressions, we propose tracking players by estimating their mastery of concepts

(i.e., knowledge components) identified by the n-grams found in level solutions and pairing

this with a mastery-learning-based sequencing policy to teach content. That is, the system’s

goal is to systematically introduce each of the possible solution features. This learner model

(or alternatively, player model) is defined with respect to the domain model. The learner

model should assign, for each concept from the domain model, a measure of whether the

student has had success over problems involving that concept. This, along with a method of

quantifying the expected difficulty of future problems, gives us a basis for choosing the next

problem to present. With our diverse set of labeled problems, the system will be able to

carve nearly any possible path through this space, allowing the learner model to choose the

most appropriate content at each stage. This ordering may be done offline to create a static

progression, or online to create an adaptive game that responds to player performance. As it

was not the focus of this work, we chose a simple method for modeling players in this system

that does not reflect the state-of-the-art in student modeling. This framework allows for the

insertion of more sophisticated learner models, such as Bayesian Knowledge Tracing [34].

In our system, the learner model tracks, for each component, whether the user successfully

completed a problem containing that component. Note that we usually do not want to track

all the concepts. As n increases, the number of n-grams tends to increase, sometimes very

quickly. Therefore, it generally makes sense only to track all n-grams up to a small n.

The learner model is updated every time the player completes a problem. If the player is

successful, then we mark as successful all of the n-grams contained within the problem that

was just given. If the player fails, then it is less clear what to do. If we have no knowledge

of how or why the player failed that might allow us to update the learner model, then the

strictest option is to mark all components contained within the problem as unsuccessful.

If we have more knowledge of where the player failed in the trace, we can update this

more accurately. If we know that the player failed on a specific 1-gram, then we mark as
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unsuccessful all n-grams containing that basic concept.

Choosing the Next Problem

Given a set of problems, the domain model, and a learner model, the framework must

generate a sequence of problems for the player. We want this choice to respect the partial

ordering determined from the n-grams, but allow the designer and learner model to control

the pacing of content. The specific task is: given the current learner model state and a set

of problems, we must choose the most appropriate next problem. Our progression generator

builds progression one level at a time, choosing the next based on history of previous problems

and data from player performance. We use a dynamic cost, which allows us to control the

pacing and respect the ordering. The cost of a particular problem p is a weighted sum of the

n-grams in the trace of p. These weights have 2 components: one based on what the learner

model knows about the player, and one designer-specified weight.

First, at each point in the progression, for a given n-gram x, the learner model assigns

a cost k(x). This cost should be high for unencountered n-grams and low for ones already

mastered, which will ensure more complex problems have a higher cost than simpler ones

with respect to the player’s history. This is used to respect the partial ordering of problems.

The cost of a problem can intuitively be considered inversely proportional to the chance of

the modeled player succesfully completing the problem using only their currently mastered

knowledge.

The second component allows the designer control over pacing and relative order of basic

concepts. The system treats concepts indistinguishably as opaque solution features. On the

other hand, as expert designers, we know (possibly from data gathered during user tests)

that particular concepts are more challenging than others or should otherwise appear later

in the progression. For example, we may like to have some control over the ordering in

which the system introduces 1-grams, or have the system give a higher cost to 1-grams than

2-grams, to prefer increasing complexity over adding new concepts. To this end, the second

component of our cost function is a designer specified weight w(x), which can be used to
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influence the relative order of otherwise independent n-grams.

Thus, given a library of problems P , choosing the next problem pnext consists of finding

the problem with the closest cost to some target value T . This is shown in Equation 3.1.

Intuitively, a minimum cost problem would be the easiest for the player to successfully

complete, but it would not stretch their knowledge into new areas at all.

pnext = arg min
p∈P

∣∣∣∣∣∣T −
∑

x∈ngrams(p)
w(x)k(x)

∣∣∣∣∣∣ (3.1)

The target value and weighting functions can be based on the learner model. For example, an

adaptive progression may change the target value based on how well it perceives the player

to be performing. Note that (for any positive weight function) this cost function respects

the partial ordering because for any levels L1 ≺ L2, L1 has a strict subset of the n-grams of

L2 and therefore less cost.

In order for this sequencing policy to be effective, it requires a large library of levels from

which to choose. The levels should be diverse, covering the space of all interesting solution

features. Furthermore, in order to enable effective control of pacing, this space should be

dense enough that the progression can advance without large conceptual jumps. That is, for

any level in the space, we want there to be a potential next level that adds few new n-grams.

We accomplished this by ensuring that our level generation procedure attempted to create

levels for every possible solution graph up to a particular size.

3.5.1 Level Selection in Refraction

During live gameplay, the library of levels embedded into the game is repeatedly consulted

to determine (using the described cost function) which level to give to the player next.

The graphlet-specific weights (w(x) in the cost function) were largely left at a default value

(1.0). It might seem strange to assign the feature of using a single bender the same weight

as forming a chain of three benders in a row. However, graphlets have similar properties

of containment as n-grams: for example, every level that possesses the triple-bender-chain
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graphlet will also contain the double-bender-chain graphlet. Since our cost function respects

the subset-based partial ordering (defined identically for graphlets as for n-grams), we can

be certain that levels that combine independent concepts or explore embedded repetitions of

those concepts have higher cost than the levels on which they build (causing them to occur

later in generated progressions). We only adjusted the weight for four of the features, usually

associated with graphlets of size 1. This very sparse advice allowed the progression system

to know that, all else being equal, it is easier to introduce benders than splitters or that it

is easier to introduce two-splitters than three-splitters.

Our player model tracked, for each graphlet, the number of levels the player successfully

completed containing that graphlet, minus the number of unsuccessful attempts (but never

less than 0). For each each graphlet x, call this value c(x). We assigned cost k(x) =

1/(1 + c(x)), so that graphlets would move towards zero cost as they were successfully

encountered.

One additional constraint we imposed on level selection in Refraction is that new levels

were required, if possible, to include at least one graphlet that had c(x) = 0 (i.e., had either

never been seen or had recent unsuccessful attempts). This guaranteed that the progression

always chose something with an unmastered challenge: it would otherwise be possible (albeit

unlikely) that the level with the closest cost to the target value is actually easier than the

most-recently beaten level. Furthermore, in the interest of presenting the player with a series

of interesting challenges, we ensure that no level is ever selected twice.

As the construction of auxiliary graphs, selection of graphlet features from them, and

assignment of weights is an open-ended design task, we iterated on our choices for part of

the system several times. The time to re-label a library of levels and re-build a version of

the game using the new labels was under 30 seconds, allowing us to rapidly explore many

different trajectories through our diverse library without re-running the level generator.
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3.6 Evaluation

With our evaluation, we hope to demonstrate that this framework is capable of producing a

game of comparable engagement to an expert-designed version. Specifically, we hope players

would play for comparable amounts of time. In order to accomplish this, we generated an

entire progression for an existing successful game, Refraction, and performed a between-

participants experiment against the original version of the game. The original’s puzzles were

hand-crafted by game designers. We believe that the original version of the game serves

as a fair comparison against which to test the generated version. The game found a large

amount of success (being played over a million times since its release) and relies heavily on

the quality of the puzzles. Therefore, even though it is prone to bias, we argue the puzzle

design in the original version can be considered to be of high enough quality that it serves

as a reasonable target for our automated system.

We deployed both versions of Refraction and performed a between-participants experi-

ment to measure engagement. We posted the game on a popular Flash game website, New-

grounds1, as well as though MochiMedia2, which distributes through the main MochiGames3

website and dozens of other affiliated game websites. The game was released under the

title Infinite Refraction. We gathered data from 2,377 players in this experiment. 1,221

randomly selected players played the version driven by our framework and 1,156 players

played a version that included the exact, expert-designed level progression from the original

Refraction.

When deciding what to measure, we are interested in actual player behavior rather than

player opinions, so we measure player performance directly. We performed our test “in the

wild,” without notifying players that they were part of an experiment. We did not collect

any personally identifiable information from players. Because we did not ask players directly,

1www.newgrounds.com
2www.mochimedia.com
3www.mochigames.com
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Figure 3.3: Comparison of our automatically-generated progression with the expert-
generated progression from Refraction. The x-axis is time in minutes and the y-axis is the
percentage of players who played for at least that much time. The median values are very
similar: approximately 3 minutes. Although our framework’s progression performs slightly
worse, it is comparable to the expert progression. These results suggest that our framework
was able to create an experience that engages players approximately as long as one crafted
by hand with design expertise. In contrast to the original design process, which included
many hours of crafting and organizing puzzles by hand, our framework requires the designer
to specify the rules of the game, a process for solving the game that our framework decon-
structs into base conceptual units, and a few designer-tuned weights that control the order
and speed of introduction of these units.

we must rely on proxy metrics to estimate engagement. One of the primary metrics previous

“in the wild” experiments have used to estimate engagement is total play time [4, 5, 85],

which we use here. Because the platforms for this experiment were websites with thousands

of free games that players could be choosing to play instead of Refraction, getting players to

spend a significant amount of time on a game suggests that the game is at least somewhat

engaging.

We first performed a series of statistical tests on the distribution of time played in each

condition. Our data was not normally distributed, so we relied on a nonparametric test, the

Wilcoxon-Kruskal-Wallis test. Despite having over one thousand players in each condition,

the test showed no significant difference between the two populations on time played, with



53

a median of 184 seconds for the automatically-generated progression and 199 seconds for

the expert-crafted progression. In an effort to quantify this small difference we observed,

we looked at other engagement metrics, particularly the number of puzzles completed in

both groups. We found a small but significant difference, r = 0.13, p < 0.001, with players

playing the automatically generated progression completing a median of 8 puzzles versus 10

puzzles completed for the original, expert-designed progression. Since the puzzles are not

the same between conditions, they are not directly comparable, so we feel that this is not the

best measure of engagement. The median time is 8% lower for the automatically generated

progression than the human-authored one. Figure 3.3 visualizes this data in greater detail.

We can see from this graph that the automatically generated progression is able to retain

players at rates qualitatively and quantitatively similiar to the original game. Though we

can draw no definite conclusions from this lack of difference, the results do suggest that

the game automatically produced by our framework was capable of engaging players for a

comparable length of time to a hand-crated, expert-designed version.

While our experiment has a condition that represents a reasonable upper bound on pro-

gression quality (the human-authored progression), one major limitation in our experiment

is the lack of a condition to represent a lower bound on progression quality. With our cur-

rent results, we cannot be sure the progression had any effect on player engagement at all.

In a followup experiment, a 3rd condition with a completely random progression should be

added to the experiment. If, in this hypothetical experiment, the random condition was

not significantly worse than the human-designed or automatically-generated progressions, it

would suggest that perhaps progressions have little effect on that set of players. On the

other hand, if random progressions were significantly worse than the other two conditions, it

would suggest that progressions do have some effect on player engagement, and furthermore,

that our automatic techniques were capturing at least some aspects of engaging progression

design.
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Figure 3.4: Visualization of the first 61 levels in the two progressions in our experiment,
the human-authored (blue) and automatically genreated (orange). Nodes represent levels
and edges are drawn between consecutive levels. Levels are represented as feature vectors
of concepts and projected into two dimensions using Multidimensional Scaling. Nodes that
are close together represent puzzles that are conceptually similar according to our solution
features.

3.6.1 Difference Between Progressions

Figure 3.4 shows a visualization of the first 61 puzzles of each progression in our experiment,

created using a tool by Butler and Banerjee [26]. To compute the visualization, levels are

represented as a feature vector of concepts (one for each n-gram) and projected into two

dimensions using Multidimensional Scaling [70]. Thus the visualization shows how different

levels are from each other in the conceptual space determined by our solution features. We

assume that this distance (i.e., Euclidean norm) in the feature space captures at least some

information about the conceptual difference between two puzzles that players would perceive.

Because these features are based on how a puzzle must be solved, there is enough meaning
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to at least note some qualititative differences between the two progressions.

One major difference is that our automatically generated progression takes much smaller

steps in this conceptual space than the human-authored one. Another difference we can

see is that the automatically generated progression has several puzzles clustered together.

This is because, at that point in the progression, our system had run out of new concepts

to introduce. Our cost model then tends to choose very similar levels over and over. This

exposes a limitation in our technique; by contrast, the human progression often makes large

conceptual jumps and never stays in the same spot for an extended period of time. If we

wished to more closely mimic the human progression, we could try to slow the rate at which

concepts are introduced or add features to the cost model that penalized choosing consecutive

levels that were too close in the conceptual space.

3.6.2 Discussion

This work presents a key building block towards data-driven automatic optimization of game

progressions. It allows us to automatically create a progression that is comparable to an

expert progression with minimal manual tuning. Because it exposes key high-level control

knobs (e.g., rate at which concepts are introduced, when to favor introducing new concepts

over combinations), data-driven optimization could further refine these parameters, which

we hope to explore in a future study.

Due to the time and difficulty in implementing this system for a particular game, we

expect that applying this technique to a particular game is often more laborious that manual

progression design. It is theoretically possible that the automated method saves hundreds of

hours of effort by avoiding having to manually craft puzzles. On the other hand, designers

likely have to create and test many different levels to gain enough understanding to choose

good features, and the cost of creating a level generator is often non-trivial. Unlike the

previous trace-based framework that only needs a solution procedure, this method requires

enough insight into the mechanics to create a reasonable labeling function that can extract

features. For us, when the end-goal is data-driven optimization of game progressions, the
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benefits are apparent. Other promising applications may include all-in-one game creation

tools such as PuzzleScript,4 especially those with a constrained language for expressing rules

and mechanics. In such tools, the extent of possible rules and mechanics is (somewhat)

known for most or all games created within the tool. Therefore, the labeling function and

other parts required for system could be included in the tool and take much less effort to

apply to any particular game. However, if the goal is merely to produce a good game with

a reasonable level progression, it is unclear that this system would be beneficial, even for

domains well-suited to this approach.

We believe this approach could be applied to games whose content centers around a

progression of concrete skills or procedural knowledge, such as puzzle games and educational

games. It currently requires a game designer to provide a breakdown of the individual skill

components of each puzzle, and thus games for which this breakdown cannot be reasonably

produced will not work well with this system. Games that primarily rely on aspects other

than the level progression for engagement will also likely not benefit from this system.

We address the particular challenge of attempting to (semi) automatically discover these

skill components with the RuleSy framework, presented from the following chapter onward.

Though not instantiated for this particular game, this framework is designed precisely to

aid in rapidly creating and exploring formal models of human skill in skill-based games or

educational domains such as Refraction. Using this framework may ease the creation and

deployment of systems like the one presented in this chapter.

3.7 Related Work

3.7.1 Human Computer Interaction

Previous work in HCI has employed a variety of methods to increase engagement in games.

Some have used theoretically-grounded or interview-based approaches. For example, Linehan

et al. [82] draw on ideas from behavioral psychology to provide a series of guidelines for

4http://www.puzzlescript.net/
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designing effective educational games. Isbister et al. [58] interviewed design experts to gain

insights for creating learning games. Also providing guidance and opportunities to game

developers, our work offers automatic methods which can allow designers to iterate on their

designs as they seek to engage players.

Others have attempted to optimize engagement or learning through large-scale design

experiments and data-driven methods. Andersen et al. measured the effectiveness of tuto-

rials [5] and aesthetics [4] through A/B tests, examining metrics such as time played, levels

played, and return rate. Lomas et al. [85] ran a large experiment that explored several design

dimensions of an educational game to maximize engagement. Harpstead et al. [54] demon-

strate a toolkit and method for analyzing player learning in games based on replaying players’

games. Our apporach allows designers to tweak high-level parameters and quickly produce

machine-generated playable games, which could pair with these data-driven apporaches to

more efficiently compare alternative designs. Bauckhage et al. [14] looked at large datasets

of how long players played several games and developed techniques to analyze player data

and draw conclusions about player engagement. In this work, we do only a simple statistical

comparison between our experimental conditions, though a more sophisticated analysis could

be performed in future work.

3.7.2 Intelligent Tutoring Systems

Intelligent Tutoring Systems researchers have explored several models for capturing student

knowledge and selecting problems [39]. Cognitive Tutors, such as Knowledge Tracing tu-

tors [34], model student knowledge in terms of knowledge components: the underlying facts,

principles, or skills a student puts to use in larger problem-solving tasks. They predict from

student data whether students know particular concepts or have particular misconceptions.

In contrast, systems using Knowledge Space Theory [41] use only observable actions. Our

system uses a simple model of observable variables, though it can be extended to integrate

more sophisticated models. Many of these tutors use mastery learning when choosing con-

tent; they give students repeated problems on a particular concept until the model has 95%
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confidence in their mastery, then move to the next concept [68].

A key part of progression generation is ordering problems appropriately. While many

systems require experts to manually order content, several researchers have explored auto-

matically learning the relationships between concepts, typically from user data [40]. Our

work concerns capturing the effects of composite concepts; for example, if X and Y are

concepts, a problem requiring X then Y has a composite concept XY . Liu et al. introduces

a technique to learn relationships of composite concepts [83]. Standard models can capture

composite concepts (e.g., XY ) by modeling them as separate concepts, using prerequisite

relationships to preserve ordering.

In games, there are often non-linear dependencies between base skills and skill combina-

tions. For example, a player might be able to handle X or Y independently but struggles

when doing them together. Therefore, consideration of concept combinations is crucial both

for verifying mastery and also for driving the increase in complexity. However, if all combina-

tions of base skills are modeled as an independent skill, this space grows exponentially large.

Additionally, analysis of this joint conceptual space is often reduced to someone manually

selecting combinations of skills to treat as standalone concepts. Therefore, a structured and

automatic way of sampling this space is desirable.

Our system, rather than depending on a pre-existing database of user data or hand-

designed relationships, determines the relationships from the structure of the solutions to

problems, both for procedural and some non-procedural domains. Stern et al. describe a

system that sequences problems using a scoring function of concepts and their prerequi-

sites [125]. We build on this work in our sequencing policy. Another important aspect of

creating progressions is controlling pacing. Beck et al. [15] explore choosing problems of

appropriate difficulty by ranking problems based on the number of required skills and the

student model’s prediction of proficiency at those skills. We take a similar approach when

choosing appropriate problems in our framework.

We do not directly innovate ITS methods in our work, nor do we use the most sophis-

ticated ones. Instead, we seek to demonstrate that a framework inspired by ITS principles,
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when combined with some additional machinery to drive the growth of complexity and rea-

sonable parameter settings, can produce engaging game content that is comparable to content

produced by an expert game designer. Researchers have previously looked into bringing ITS

techniques into educational games [42]. The primary difficulty stems from an open-ended

problem nature in most games that does not easily lend itself to ITS-based structures that

are geared towards mastery of concepts rather than a large space of creative recombinations

of concepts and skills required to solve an explorative problem. We address this in our

framework by focusing on the ability to use combinations of concepts to reach a solution.

3.7.3 Games

Content for games has traditionally consisted of hand-crafted progressions and levels. Game

design researchers have explored procedural content generation to automatically create games.

Several systems aim to automatically generate game levels. To measure the quality or diver-

sity of generated content, many approaches measure static properties of the content [80] or

affect of players [138]. Other approaches focus on what the player must do, measuring prop-

erties related to player action. For example, Launchpad characterizes levels by the rhythm of

the actions the player must perform [122]. We generalize such ideas; for example, actions in

a platform game can be viewed as segments of a trace of a procedure for solving platformer

levels.

Generated levels are not useful in isolation; they must be sequenced into some design-

relevant order, called a progression. A good game progression is critical for game design [33].

For generated games, if only a small number of global parameters need to be controlled, the

problem can be treated as dynamic difficulty adjustment, such as in the game Polymorph [62].

However, our domains have many independent conceptual building blocks, and adjusting a

few parameters fails to capture the many different dimensions by which levels create difficulty.

In the platform game Endless Web [122], the player explores a large design space of levels that

are classified based on various features. The player makes choices that influence what levels
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they will receive. Perhaps the closest work to our approach is Square Logic5 by Everyday

Genius, a Sudoku-style puzzle game that features 20,000 automatically constructed puzzles

that are arranged into a progression based on which logical inference rules are required to

solve them. Few details of the techniques used are available, but one difference with our

problem is that Refraction does not have a clear set of inference rules used to form solutions.

Further, many Refraction levels have more than one possible solution (though these solutions

will often share high-level structure and concepts).

Several researchers have proposed mixed-initiative editors in which the system and human

designer take turns producing the content [120, 80]. These systems were limited to the

creation of single levels. Butler et al. [27] proposed a mixed-initiative system for end-to-end

game production allowing for manual designer intervention at all stages of content generation.

By contrast, the present work borrows inspiration from ITS to drive conceptual growth

automatically, reducing the need for expertise in the form of manual authoring. Using our

system, the designer does not manually edit levels or the progression on a per-level basis,

but instead controls them through high-level parameters that describe the overall goals of

the progression. These parameters allow the designer to make sweeping, purposeful changes

to the progression.

3.8 Conclusion

We presented a framework that automates level progression design by analyzing features

of solutions. This framework borrowed ideas from intelligent tutors to enable a method of

design where content and progression are fully generated. We applied these ideas to create an

implementation for the educational game Refraction. Our study with 2,377 players showed

that the median player was engaged for 92% as long as in an expert-designed progression,

demonstrating that our framework is capable of producing content that can engage players

for a comparative length of time as content designed by hand.

5http://www.squarelogicgame.com/
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Future work may include further exploring integrating technologies of intelligent tutoring

systems in this framework. Our implementations used a simple learner model built on a

simple domain model, but one could explore using technology from cognitive tutors and

other models to drive the progression. While our system can order problems based on

the combination of concepts, it cannot distinguish individual concepts (the 1-grams) and

must resort to designer-specified weights or arbitrary decisions. Although the parameter

settings we tried for Refraction were inspired by the original progression, we do not have

a deep understanding of why they were effective. We hope that automatic methods (for

example, the one presented in the following chapter) for learning these settings will increase

the designer’s ability to optimize a game for engagement. While previous work showed that

ordering problems using n-grams correlated with user perception of difficulty, further studies

should be performed to understand this relationship. We speculate that difficulties keeping

the user engaged in ITS [59, 16] may be alleviated by deeper exploration of complexity,

and the solution-trace methods described in this paper may help to accomplish this through

automatic control and tracking of concept combinations.
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Chapter 4

A FRAMEWORK FOR AUTOMATICALLY LEARNING
DOMAIN MODELS

In this chapter, we describe RuleSy, the general framework for automatic generation

of procedural knowledge. This procedural knowledge takes the form of a formal model for

solving problems in some problem domain, which, borrowing terminology from the intelligent

tutoring, we call the domain model [67]. One major component of this model is a set of rules

to use in problem solving. We discuss the motivation behind and manner of structuring these

rules in a programming language and define domain models more precisely. We then discuss

the program synthesis-powered framework structure, illustrated on an example domain of

learning proof rules for propositional logic proofs [20]. This chapter provides a high-level

overview of RuleSy; two instantiations of this framework for two different domains are

described in detail in the following two chapters.

4.1 Domain Models by Example: Propositional Logic Proofs

We begin by describing the toy domain that will be used to illustrate the framework through-

out the chapter: semantic proofs of the validity of propositional formulae [20]. Problems in

this domain are propositional formulae such as (p ∧ q) → (p → q). Formulae are given

meaning by an interpretation (usually named I) which maps variables to truth values. For

a given interpretation I and formula F , We write I � F to say that F is true under I (I

satisfies F ), and I 2 F to say that F is false under I (I falsifies F ). For example, with

I = {p 7→ true, q 7→ false}, we have that I � p ∨ q.

The goal of a semantic proof problem is to prove whether a given formula is valid—that is

is true under all interpretations. For a given a formula F , we prove its validity by preceding
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with the assumption that a falsifying interpretation of F exists and working towards a

contradiction. We proceed to use proof rules (whose axioms are defined in Table 4.1) to

derive facts either until a contradiction is reached or no more facts can be derived. A

contradiction proves the formula valid while failure to find a contradiction after exhaustive

application of proof rules provides a falsifying interpretation. An example solution for the

above problem is shown in Figure 4.1.

Assume (p ∧ q)→ (p→ q) invalid.
1. I 2 (p ∧ q)→ (p→ q) assumption
2. I � p ∧ q by 1 and semantics of →
3. I 2 p→ q by 1 and semantics of →
4. I � q by 2 and semantics of ∧
5. I 2 q by 3 and semantics of →
6. I � ⊥ 4 and 5 are contradictory

Figure 4.1: An example solution of a semantic proof problem. The ⊥ symbol is used to notate
that we have arrived at a contradiction (literally, the interpretation satisfies falsehood).

The axioms of Table 4.1 fully define the domain of propositional logic: any solvable

problem can be solved using only those axioms (and, moreover, the full set is necessary

to find counterexamples to validity). However, in practice, solutions can be dramatically

shortened through the use of additional proof rules such as modus ponens (Table 4.2). As

illustrated in Figures 4.2 and 4.3, a solution without using modus ponens requires branching

into multiple cases, arriving at a contradiction in each. The solution with modus ponens is

much shorter.

The domain model design task RuleSy aims to solve can be viewed as the same design

task of a hypothetical curricula designer: what procedural knowledge needs to be taught in

order to allow a student to solve problems in this domain? In this domain, clearly, the proof

rules are a key component of that knowledge. There is more beyond that; the proof rules

must be paired with a proof search strategy. However, for the purposes of this thesis, we

assume the search strategy is given, and that the task of choosing a domain model is one
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ID Name Description
p Contradiction If I � A and I 2 A then I � ⊥
q Branch elimination If I � ⊥ | A then I � A
r And 1 If I � A ∧ _ then I � A
s And 2 If I 2 A ∧B then I 2 A | I 2 B
t Or 1 If I � A ∨B then I � A | I � B
u Or 2 If I 2 A ∨ _ then I 2 A
v Not 1 If I � ¬A then I 2 A
w Not 2 If I 2 ¬A then I � A
x Implication 1 If I � A→ B, then I 2 A | I � B
y Implication 2 If I 2 A→ B, then I � A
z Implication 3 If I 2 A→ B, then I 2 B

Table 4.1: The axioms [20] that define the domain of semantic proofs for propositional logic.

Name Description
Modus Ponens If I � A and I � A→ B, then I � B

Table 4.2: The modus ponens proof rule, which, while unnecessary, can greatly simplify
proofs.

of choosing a set of proof rules. For this domain, we start with the axioms to define the

domain, and RuleSy will generate additional useful proof rules like modus ponens.

There are several challenges to overcome to solve this task. First, how do we represent

these proof rules? Clearly we’ll need a formal representation for the computer to find, but,

critically, this representation must be interpretable by humans. This goes beyond simply

making rules understandable: the representation is trying to model the solving processes

of human experts. We represent proof rules as programs in a domain-specific language of

strategies, described in the next section. Next, where do additional strategies like modus

ponens come from, and how can we mechanically explore that space? In the case of modus

ponens, the rule is a combination of three axioms applied in succession (Figure 4.4). Once

we have some kind of idea where to search, how do we generate rules in the appropriate
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Assume (p→ (q → r))→ (q → (p→ r)) invalid for sake of contradiction.
1. I 2 (p→ (q → r))→ (q → (p→ r)) assumption
2. I � p→ (q → r) by 1 and semantics of →
3. I 2 q → (p→ r) by 1 and semantics of →
4. I � q by 3 and semantics of →
5. I 2 p→ r by 3 and semantics of →
6. I � p by 5 and semantics of →
7. I 2 r by 5 and semantics of →

We now must consider two branches of the proof.
8a. I 2 p by 2 and semantics of →
9a. I � ⊥ 6 and 9a are contradictory

In the other branch:
10b. I � q → r by 2 and semantics of →

We must immediately branch again:
11ba. I 2 q by 10b and semantics of →
12ba. I � ⊥ 4 and 11ba are contradictory

And on the other branch:
13bb. I � r by 10b and semantics of →
14bb. I � ⊥ 7 and 13bb are contradictory

Having arrived at a contradiction on every branch, we can eliminate all branches and
conclude the formula valid.

Figure 4.2: A semantic proof problem that requires branching multiple times.

representation?. As we’ll see, we frame this as a programming synthesis problem, where

rules are represented by programs. Finally, what makes strategies like modus ponens a useful

addition? Clearly there are many possible ways to combine axioms. What makes this one

worthy of adding to a curriculum? In part, this has to do with the facts that the rule is

concise to describe but also practically useful on problems we care about, and the challenge

is to formalize this notion. Our contributions in RuleSy address each of these questions

with the three phases of our strategy learning framework discussed in Section 4.4.

As we will see in Chapter 5, this problem domain fits precisely into the framing of axioms

and tactics used when learning strategies for solving algebra equations. The framework used
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1. I 2 (p→ (q → r))→ (q → (p→ r)) assumption
2. I � p→ (q → r) by 1 and semantics of →
3. I 2 q → (p→ r) by 1 and semantics of →
4. I � q by 3 and semantics of →
5. I 2 p→ r by 3 and semantics of →
6. I � p by 5 and semantics of →
7. I 2 r by 5 and semantics of →
8. I � q → r by 2, 6, and modus ponens
9. I � r by 8, 4, and modus ponens
10. I � ⊥ 7 and 9 are contradictory

Figure 4.3: Solution to the same problem as Figure 4.2, but using modus ponens. This
dramatically simplifies the proof, indicating that modus ponens is a good candidate to include
in any domain model for semantic proofs.

Consider a proof state where both I � p→ q and I � p hold. We
can apply three axiomatic proof steps that together are equivalent
to the modus ponens rule:
1. By the semantics of →, either I 2 p or I � q. Our state now
contains two new branches, b1 (where I 2 p) and b2 (where I � q).
2. In branch b1, I � p and I 2 p are contradictory, meaning I � ⊥.
3. We can eliminate branch b1, leaving us with b2 where I � q.

Figure 4.4: An illustration of the three axioms that comprise the modus ponens macro. By
searching over potential combinations of axioms, RuleSy finds specifications for potential
macro rules.

for this algebra domain was also instantiated for the semantic proof domain and was able to

generate the modus ponens rule. In other domains, like the Nonograms domain we will see

in Chapter 6, the structure of strategies and their relation to the formal description of the

problem domain can be quite different.

4.2 Mathematical Preliminaries

Before jumping into formal details, let us introduce some mathematical notation we will use

for the remainder of this thesis.
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Tuples. We use the notation 〈x, y〉 to denote a pair of elements x and y. For any p = 〈x, y〉,

we define fst(p) = x and snd(p) = y (the first and second elements of the pair, respectively).

Sequences. We use the notation S = [x1, . . . , xn] to denote that S is an ordered sequence

of n values. We use |S| = n to denote the length of S. For any positive integer i ≤ |S|,

we use Si = xi or S[i] = xi (depending on which is easier to read in context) to denote the

ith (1-indexed) value of S. We use S = (xi)ni=1 as an alternative notation for the sequence

S, particularly when defining one sequence in terms of another. The notation [] denotes the

empty sequence.

Other Notation. We use ⊥ to represent the bottom value. When used in a function

definition, e.g., f(x) = ⊥, we mean that f is a partial function and that f is not defined

on x. The ⊥ notation is also used to represent falsehood, such as showing that a semantic

proof has arrived at a contradiction.

We use the J·K notion when defining semantic functions that give meaning to program

syntax. For instance, when defining a semantic function F which maps programs and inputs

to values, we use the notation FJP Kx = e, where P is program syntax, x is the input, and e

is the result value.

When defining semantic functions, we use the notation =̇ to mean equality on values.

This is to distinguish it from the equality symbol used for function definition and in the

examples of program semantics. For example, FJP Kx = x =̇ 2 means that program P on

input x evaluates to true if x equals 2 and false otherwise.

4.3 Procedural Knowledge as a Set of Condition-Action Programs

Before describing the RuleSy framework built to address these challenges, we must dis-

cuss the first challenge of how to represent proof rules or, more generally, how to represent

procedural knowledge (which we call the domain model) for a variety of domains.
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4.3.1 Problem States and the Solution Algorithm

We begin by more formally defining the solution algorithm for semantic proofs. At its core,

the solution is a search through a state space of proof trees. The states are comprised of a

set of deduced facts (e.g., I � p→ q). They are trees because the proofs might branch (like

in Figure 4.2) and each branch has a different set of facts. A goal state is one in which all

branches have been eliminated through contradiction, or one for which no more axiomatic

proof rules apply to a particular branch.

The solution process involves applying proof rules in succession (in any order) until a

goal state is reached. There are two components of the process: (1) the set of available proof

rules, which is the focus of RuleSy; and (2) the algorithm for choosing rules (described

above), which we assume is given.1 Thus, the task of RuleSy will be to choose this set of

proof rules; when we say domain model we specifically mean the set of strategies used in

a search-based problem-solving process. In the domain of semantic proofs, these are proof

rules. We will later cover solving algebraic equations and solving logic puzzles, where the

meaning of strategies changes, but idea of domain model-as-set of strategies still holds.

Particular proof rules can apply in multiple ways to a single state, as illustrated by

Figure 4.5. Thus, they are most naturally thought of as a (non-functional) relation between

states, or, alternatively, a function that returns the set of possible applications of a rule

(which is how we frame fire, below). Such a representation makes both synthesizing and

reasoning about rules a challenge; we would much prefer rules to be functions. As we

describe below, our DSL achieves this by factoring out information about “where” a rule

is applied as a separate input—which we call the binding—in order to make rule programs

functions. This will prove critical in making synthesis tractable while preserving soundness

guarantees. The framing as a non-functional relation between states will still prove useful

1The structure of the algorithm is an obvious part of formally defining the problem domain (e.g., applying
rules until you hit the goal state), so taking that as given is a reasonable assumption. There are additional
important design decisions (e.g., “how do we know when it’s a good idea to apply proof rule X?”) that
are beyond the scope of this thesis but in the realm of short-term future work.
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when analyzing the soundness and generality of our synthesized rules.

Given a state where
I � p, and I � p→ q, and I � p→ r:
Modus ponens can be used to deduce:

I � q
but also:
I � r

Figure 4.5: An example state where the modus ponens rules applies in multiple ways, each on
different parts of the state. That rules can apply multiple ways is a challenge our framework
must overcome to synthesize rules.

Patterns, Conditions, Actions

We formally represent the strategies (e.g., proof rules) that comprise the domain model as

programs in a domain-specific language (DSL) comprised of three parts: patterns, conditions,

and actions. For example, a representation of modus ponens in our proof rule DSL is shown

in Figure 4.6. The pattern describes where a proof rule applies. In the case of modus ponens,

it applies to any proof branch where the facts include I � A→ B and I � C, where A, B, and

C are arbitrary formulae. The condition describes when a proof rule applies by adding more

constraints to the pattern. For modus ponens, A and C must be syntactically identical for

the rule to apply. The action describes how a proof rule applies. Modus ponens adds I � B

to the set of derived facts. In the case of semantic proofs, patterns apply nondeterministally:

a proof rule might be applied in multiple ways to the same state, either to different proof

branches or to different facts within a particular branch. In order to make programs functions

rather than non-functional relations, we capture this nondeterminism with the concept of

a binding, a mapping between the elements of a pattern and some substate of the problem

state to which the proof rule applies. The condition and action are defined with respect

to the pattern: patterns (partially) map states and bindings to some context, which maps

pattern variables to the matched parts of the problem state. Conditions and actions are
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deterministic functions of this context, meaning they can only reference the pattern rather

than the problem state directly. Thus, rule programs are partial functions from states and

bindings to states.

1 def modus_ponens :
2 with s@(facts (I� a) (I� (⇒ b c)) etc):
3 if a = b:
4 do replace s with (I� c) :: s

Figure 4.6: The modus ponens rule, represented in our DSL for rules. Line 2 is the pattern,
line 3 is the condition, and line 4 is the action. We describe details of the syntax and
semantics of this language in the following chapter, in Section 5.3.

Though the representation of states, bindings, patterns, conditions, and actions change

across domains, the overall structure of the RuleSy is fixed. Figure 4.7 shows the schema

for semantics of the meta-language and a description of the domain-specific elements, and

Figure 4.8 shows the parts of these semantics that are the same for all domains. The fire

function (defined over these semantics) captures the intuitive notion of applying a rule in

every possible way: it is a function from program-state pairs to the set of all possible output

states that arise from applying the program across all possible bindings. This is useful for

applying rules in practice to solve problems. Defining the RuleSy DSL for a given domain

requires providing representations for states, bindings, and contexts; semantics for patterns,

conditions, and actions; and a method of enumerating over all possible bindings.2

Figure 4.9 shows a general solving algorithm built on top of fire. This algorithm performs

backtracking search through the state space by applying tactics to exhaustion. The particular

search algorithm to use (e.g., depth-first search vs. breadth-first search) depends on the

problem domain. For example, semantic proofs would use depth-first search, and in fact

2This bindings function isn’t strictly necessary; it can be the trivial constant function that returns the set
of all bindings and fire would remain sound. But a tighter bound makes fire (and hence problem solving
and synthesis) more efficient, and bindings can be easily defined for our example domains to produce a
reasonably tight bound of plausible bindings.
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Program semantics : program × state× binding→ (state ∪ {⊥})

P : pattern × state× binding→ (context ∪ {⊥})
Partial function from states and bindings to contexts

C : condition × context→ boolean
Predicate on contexts

A : action × state× context→ state
Function from states and contexts to states

fire(P, s) : Set of states resulting from all applications of P to s.
bindings : program× state→ 2binding

function from programs and states to a (super) set
of matching bindings

Figure 4.7: The schema for the semantics of the RuleSy meta language, including the
types of the holes that each instantiation of the framework needs to provide: the semantics
for patterns, conditions, and actions (illustrated here as semantic functions P , C, and A
respectively); and a method of enumerating potential bindings of a pattern for any state. The
representations of states, bindings, and contexts are domain-specific. The overall semantics
of programs is that programs are partial functions from states and bindings to states

does not need to backtrack since a goal state is by definition reached when we run out of

rules to apply. A method for mechanically solving problems with a given set of tactics will

prove necessary for multiple of RuleSy’s algorithms.

Both domains treated in detail in Chapters 5 and 6 have search-based solution algorithms,

where patterns apply nondeterministically. Even for domains where greedy or procedural

algorithms are used (e.g., elementary arithmetic), the subprocedures of such algorithms can

be modeled as pattern-condition-action rules with trivial patterns or conditions (e.g., “this

rule applies at step k”). In this way, RuleSy can be viewed as a generalization of prior

work on modeling procedural solution processes (e.g., [3]). The rules synthesized by RuleSy,

along with the general solving procedure of Figure 4.9 can be used in applications ranging

from analyzing problem difficulty to generating progressions of problems.

The domain-specific details that must be implemented for each instantiation of RuleSy

correspond roughly to the concepts of that domain. For example, in semantic proof prob-
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Jwith p: if c: do aK(s, β) = if σ 6= ⊥ ∧ CJcKσ then AJaK(s, σ) else ⊥
where σ = PJpK(s, β)

fire(P, s) = {JP K(s, σ) | σ ∈ bindings(P, s), JP K(s, σ) 6= ⊥}

Figure 4.8: The shared semantics of the RuleSy meta language. The top-level semantics
of programs are the same for all instantiations of framework. Namely, given a state and a
binding, if the pattern matches the state under the binding and the condition applies, then
the action is applied to that state. The fire function also has the same definition for all
domains.

function SuccessorStates(s: problem state, M: set of rule programs)
S ← {}
for all p ∈M do
S ← S ∪ fire(p, s)

return S

function Solve(s: starting state, M: set of rule programs, goals: state→ boolean)
return Search(s, SuccessorStates, goals)

Figure 4.9: A general solving algorithm for problems. Given a starting state, a set of RuleSy
rules, a goal predicate on states, Solve returns the goal states reachable from the starting
state by applying fire on the given rules. The Search function depends on the domain: it
takes a starting state, transition function, and goal predicate and returns all reachable goal
states.

lems, the patterns reference propositional logic, satisfaction/falsification, and proof branches;

conditions use boolean arithmetic; and actions define a new derived fact to be added to the

state. Clearly, the design of the DSL is a critical component in the success of RuleSy in

any specific domain. We discuss this challenge in further detail in Chapter 7.

4.3.2 Motivation for the Structure of Rules

Our approach to learning interpretable strategies by representing them as pattern-condition-

action rules defined over domain-specific concepts is motivated by cognitive psychology and

education research. In this approach, a set of rules represents (a part of) domain-specific
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procedural knowledge of the problem domain—the strategies a person takes when solving

problems. Such domain-specific knowledge is crucial for expert problem solving in a variety of

domains [45, 21], from math to chess to professional activities. The DSL defines the (domain-

specific) concepts and objects to which the learner can refer when solving puzzles, thus

constraining the space of strategies that can be learned to human-friendly ones. Our system

takes this space as input provided by a designer, and produces the procedural knowledge

to be used by people. In that sense, a human designer trying to create a domain model

with RuleSy works iteratively with the framework, with the designer refining the concepts

and RuleSy deriving solution procedures with respect to those concepts. The designer

also provides a cost function mapping programs to numbers (defined over the syntax of the

DSL) that used as a proxy for the complexity of rules, which allows our system to bias the

learning process toward concise, interpretable rules. The eventual goal of this line of research

is automatically discovering strategies that people are likely to use. In this thesis, we focus

on the immediate task of finding human-interpretable rules in a structure compatible with

evidence of how humans behave.

4.4 Synthesizing Procedural Knowledge as Programs

This section illustrates the key steps of RuleSy’s architecture and its inputs and outputs, as

shown in Figure 4.10. Having established how domain models will be represented, RuleSy’s

algorithms are designed to solve the remaining three core technical challenges outlined earlier

in the chapter: (1) specification mining, using a formal specification of the domain and

some example problems to derive specifications for potential rules; (2) program synthesis,

synthesizing sound and maximally general programs according to those rule specifications;

and (3) domain model optimization, choosing a useful subset of the synthesized programs

that optimize a given objective function. We discuss each in turn.
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Figure 4.10: The system architecture of the RuleSy framework, consisting of three phases:
specification mining, program synthesis, and domain model optimization.

4.4.1 Specification Mining

Synthesizing interpretable strategies requires specifications of the behavior for sound and

useful rules. RuleSy derives these specifications from a formal definition of the domain and

training example problems. Soundness is defined by the domain description. In the case of

proof rules, the natural way to specify soundness is via axiomatization, the rules of which are

shown in Table 4.1. More generally, characterizing soundness for a domain entails describing

a set of valid transitions through the state space. A specification is sound if it describes a

subset of this transition space.

When we say rules should be useful, we mean that the synthesized rules should enable

more efficient problem solving than without. In the case of proof rules, we’re looking for rules

such as modus ponens which can solve problems in fewer steps than with the axioms alone.

Such rules, which we call tactics, are a composition of two or more axioms. Usefulness can be
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quantified in multiple ways: first, rules should apply to problems the framework user cares

about: RuleSy determines which rules to synthesize, and how those rules should behave, by

mining tactic specifications from solutions to a given set of example training problems. Any

specification generated by RuleSy will improve solving efficiency of at least one of these

problems.

Second, rules should be general, in that they apply to wide set of states. There is a

trade-off here: we want rules that are as general as possible but also as simple as possible,

and the two are in direct conflict. Indeed, the provided domain definition is by construction

the most general possible rule, but also incredibly expensive to apply. At the other end of

the spectrum, rules that map a single input state to a single output state are very simple

but not at all general. In the specification mining phase, RuleSy mines (and in later phases

learns programs for) a wide variety of rules at various points in this space, leaving it up to

the domain model optimization phase to navigate these trade-offs.

In the domain of semantic proofs, we mine specifications by first solving the training

examples using the axioms, focusing specifically on shortest solutions. RuleSy looks at

subpaths of these solutions as potential specifications for tactics. Note that the training

examples are not used for soundness, which instead is defined entirely by the domain defi-

nition. Thus, RuleSy guarantees soundness of results regardless of the training examples

given. Changing the training examples changes the usefulness of the synthesized rules, but

they will always be correct rules.3

4.4.2 Rule Synthesis

Given a tactic specification, the next challenge is to find a rule that implements it. We

discussed the representation in Section 4.3.1. The rule synthesis phases takes this DSL and

a mined specification from the specification mining phase and finds a program that soundly

represents this specification using an algorithm built on standard synthesis techniques. In

3In contrast to, say, a programming-by-example system such as PROSE [104] which guarantees correctness
only with respect to the examples themselves.
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the case of proof rules, these proof rule programs act on inputs of unbounded size, so we face

the additional challenge (discussed in Chapter 5) that the rule synthesis query cannot be

expressed in existing systems for syntax-guided synthesis (e.g., [124, 133, 1]). The example

problem for modus ponens output by this system in shown in Figure 4.6.

The key technical challenges this phase must solve, beyond finding sound rules, is to

ensure the rules are general and concise. For all domains, we want the most concise possible

representation of a rule to minimize the cognitive load required for a human to use it.

Conciseness is measured by the cost function (over programs) provided by the designer,

which, for our implementations, is a function of the size of the syntax of the rule. In

the domain of proof rules, the way RuleSy does specification mining produces a complete

specification of behavior, making generality relatively straightforward to guarantee. However,

as we’ll see in Chapter 6, that is not the case for all domains, and finding general rules is a

core challenge of the Nonograms domain.

4.4.3 Rule Set Optimization

The final challenge is to search the synthesized strategies for a domain model that both

solves the examples and optimizes the input objective. The rule synthesis phase produces

(potentially) a strategy for each mined specification, and thus potentially massive set of rules

must be pruned down to a useful core set. In general, this phase involves selecting a subset

of synthesized strategies that maximize a given objective function. In our implementations,

the objective function we use is one that balances a conciseness with generality; we both

want the smallest set of strategies possible (to minimize how much a student would need to

learn) but also the most generality (to maximize how many problems a student can efficiently

solve).

In the case of proof rules, this set of strategies potentially includes the axioms (indeed,

the correctness of the semantic proof relies on all axioms being in the domain model). So any

domain model produced by RuleSy would include all the axioms and some set of synthesized

tactics. A proof rule like modus ponens is both very concise and very general, and RuleSy
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will select such a rule under our objective function.

4.5 Conclusion

In this chapter, we presented an overview of the RuleSy framework, describing how it

models the problem of learning interpretable rules as a problem of program synthesis. Given

as input a formal domain description, a DSL for rules, example problems, and an educational

objective function, RuleSy automatically learns programs in this DSL that describe sound

and useful rules. In the following two chapters, we present detailed descriptions of two

instantiations of RuleSy for different domains.
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Chapter 5

LEARNING DOMAIN MODELS FOR ALGEBRA AND TREE
REWRITE DOMAINS

The first domain we explore for RuleSy is solving algebraic equations of the kind one may

find in high school math curricula. This is a special case of the general problem of finding

rewrite rules between semantically equivalent expressions represented as abstract syntax

trees. The semantic proof domain explored in the previous chapter also falls under this

category, and we implemented instantiations of RuleSy for both concrete domains. While

we focus on these domains due to our educational motivations, this problem is a fundamental

one that encompasses applications such as finding optimization rules for compilers. We

expect portions of our contributions to be applicable more broadly. Portions of the chapter

are reused from or based on prior technical publications [30, 28].

5.1 Background

A key challenge in the design of educational applications is modeling the operational knowl-

edge that captures the expertise for a given domain. This knowledge takes the form of the

domain model described in the previous chapter, consisting of pattern-condition-action rules

that experts apply to solve problems in the domain. For example, factoring, ax + bx →

(a + b)x, is one such rule for K-12 algebra: its condition recognizes problem states that

trigger rule application, and the action specifies the result. Educational applications rely on

domain models to automate tasks such as problem and progression generation [3], hint and

feedback generation [100], student modeling [6], and misconception detection [136].

At present, domain models are created by hand, taking hundreds of hours of development

time to model a single hour of instructional material [94]. This limits applications to using



79

one out of many possible models that capture the operational knowledge for a domain. Yet

recent research [84] shows that some students need over six times more content than others

to master a domain. To best serve a broad population of students, applications therefore

need multiple models that optimize different educational objectives [37, 106].

In the case of algebra, these pattern-condition-action rules take the form of rewrite rules

on trees. A valid algebra rule is one that rewrites an algebra term into a semantically

equivalent term. A solution to an algebraic equation is a sequence of such rewrites until

the variable is isolated, alone, on one side. The semantic proof domain (from the previous

chapter) has a very similar framing: rewrite rules move between logically equivalent states,

and the goal is to either arrive at a contradiction or get to a state where no more rules apply.

In both cases, the problem state is a tree with some kind of semantic meaning—which

we call terms—and the overall problem is to find a semantically equivalent term with a

particular property (e.g., isolated variable). Due largely to the existence of variables in

terms, finding such equivalences algorithmically is a challenge: in the case of propositional

logic, this problem is NP-hard (it is literally SAT), and, in the case of algebra over non-linear

integer arithmetic, it is undecidable.

Thus in practice, educators teach students to use a set of greedy rules (like the factoring

rule described above) to solve some interesting class of problems. In the case of semantic

proofs this covers all problems, but for algebra it is a subset of possible problems. The

domain-model authoring problem is one of creating and then deciding which rules to teach

students. To illustrate the difficulty of model authoring, consider creating a domain model

for K-12 algebra. Each rule represents a mapping between equivalent states, and these rules

can be chained together to solve a problem, as in the example below:

3x+ 2x = 10→ (3 + 2)x = 10→ 5x = 10→ (5x)/5 = 10/5→ x = 2

A given set of basic rules can solve all the problems educators care about for an algebra cur-

riculum. In this thesis we call these primitive rules axioms: rules like factoring or combining
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constants.

However, not all rules are as useful as others. We can solve the same problem using fewer

rules that combine steps together:

3x+ 2x = 10→ 5x = 10→ x = 2

This example of moving straight from 3x + 2x to 5x is so useful and common in problems

that it is taught in many algebra curricula as the combine like terms rule (e.g., [31]). The

rule of combining like terms is what we call a tactic—a rule that combines two or more

axioms in a particular way. The primary design question in domain model authoring is:

which axioms or tactics should we teach to students? On one hand, combine like terms

isn’t any more expressive than factoring and adding constants are, in that applies the two of

them in sequence. Since educators are probably going to need to teach factoring and adding

constants anyway, adding in a new rule adds more work for students even though they could

hypothetically solve the exact same problems without it. On the other hand, combine like

terms substantially simplifies the solution for a large set of problems, making it easier (in

that is requires less effort and fewer steps) for students to solve some of the problems that

we care about. This idea of solution efficiency can, for example, have a significant impact on

the cognitive load required to solve problems and thus impacts learning gains [129]. How a

curriculum designer decides which rules to include is based on educational objective criteria

such as minimizing the amount they need to teach to students or minimizing the cognitive

load required to solve a given set of problems. And, before they decide which tactics to use,

they need to figure out what tactics are even possible and how to concisely define them.

This chapter presents a new, computer-aided approach to help tackle these challenges.

We realize this approach in RuleSy, a framework, based on program synthesis, that creates

tactics and domain models that optimize desired objectives. The RuleSy framework was

motivated by practical experience: the author works for Enlearn, an educational technology

company building adaptive K12 applications that need custom domain models. Developers
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of such applications are the intended users of this work, and Enlearn is in the process of

adopting key ideas from RuleSy.

In the algebra domain, RuleSy must rely on the user (e.g., a hypothetical curriculum

designer) to define the domain with a set of axiom rules. These axioms define a space

of semantically equivalent terms. Give a set of training problems, RuleSy automatically

searches for tactic rules that are sound with respect to the axioms and that can be used solve

the training examples more efficiently than the axioms alone. RuleSy then selects a subset

of the axioms and generated tactics to form a domain model by optimizing given objective

criteria.

Our domains of focus were chosen because we are motivated by educational goals. How-

ever, the problem of finding rewrites between equivalent terms with some kind of underlying

semantic meaning (usually with variables in them) covers a broad class of important and

interesting problems. One such problem is program optimization: the goal of an optimizing

compiler is to find a program that is semantically equivalent to the input and that has a

desirable property (is smaller, runs faster, etc.). This, as with algebra, is impossible to do

algorithmically since program equivalence is undecidable for sufficiently complex program-

ming languages. Practical compilers therefore use rewrite rules. Though we do not explore

this application in further detail, we expect many of the ideas and contributions presented

here to be applicable to a broader range of problems than educational domains alone.

To evaluate our algorithms, we used RuleSy to model the domain of introductory K-12

algebra, comparing the output to a standard textbook [31]. Applying RuleSy to examples

and axioms from the textbook, we find that it both recovers the tactics presented in the

book and discovers new ones. We also find that RuleSy can recover the textbook’s domain

model, as well as discover variants that optimize different objectives.

To show that RuleSy generalizes beyond K-12 algebra, we used it to model the domain

of propositional logic proofs presented in Chapter 4. Applying RuleSy to textbook [20]

axioms and exercises, we find that it synthesizes both new and standard tactics for this

domain (e.g., modus ponens), just as it did for K-12 algebra.
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5.2 Overview

This section illustrates RuleSy’s functionality on a toy algebra domain. We show the

specifications, tactics, and models that RuleSy creates for this domain, given a set of

example problems, axioms, and an objective.

5.2.1 Examples, Axioms, and Objectives

Figure 5.1 shows our example problems, axioms, and objective for toy algebra.

Examples. The problems (5.1b) are represented as Lisp-like syntax trees. We consider a

tiny subset of algebra that includes equations of the form x+∑i ci = ck, where x is a variable

and ci, ck are integer constants. Experts solve these problems by applying rewrite rules until

they obtain an equation of the form x = c.

Axioms. The axioms (5.1a) are expressed as programs in the RuleSy language (Sec-

tion 5.3). A rule program consists of a pattern, which matches a syntax tree with a specific

shape (up to isomorhpism of commutative operators); a condition, which further constrains

when a rule may apply; and an action, which creates a new tree by applying editing opera-

tions (such as replacing or removing nodes) to the matched tree. For example, the axiom A

matches trees of the form (+ 0 e ...), where the order of subtrees is ignored, and it rewrites

such trees by removing the constant 0 to produce (+ e ...). The shown axioms can solve all

problems in the toy algebra domain.1 For example, we can solve p1 in two steps by applying

B ◦ A to obtain x + 1 + −1 = 5 →B x + 0 = 5 →A x = 5. RuleSy uses the axioms to

synthesize tactic rules (Figure 5.3) that can solve the example problems in fewer steps.

Objective. The educational objective (5.1c) is expressed as a function of rule and solution

costs. Rule cost measures the complexity of a rule’s syntactic representation. Solution

1Along with some axioms—omitted here for brevity and clarity—that make transformations such as
pruning unary addition or applying associativity rules. These axioms are listed in Section 5.11.
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cost measures the efficiency of a solution in terms of the tree edits performed to solve an

example problem. These costs are proxy measures for the difficulty of learning and applying

knowledge in a given domain model [129]. RuleSy selects a domain model that best balances

the trade-off between rule complexity and solution efficiency specified by the objective.

5.2.2 Specifications, Tactics, and Domain Models

Specifications. To help with domain modeling, RuleSy first needs to synthesize a set of

useful tactics, which can solve the input problems more efficiently than the axioms alone.

For example, we could solve p1 in one step if we had a “cancelling opposite constants” tactic

that composes the axioms B and A. RuleSy determines which rules to synthesize, and how

those rules should behave, by mining tactic specifications (Section 5.5.1) from the shortest

solutions to the example problems that are obtainable with the axioms (Figure 5.2a).

A RuleSy specification takes the form of a plan for applying a sequence of axioms

(Figure 5.2b). A plan describes which axioms to apply, in what order, and how. Since

an axiom may be applied to a problem in multiple ways, a plan associates each axiom the

binding for the axiom’s application, consisting of an application index and a permutation.

The application index identifies a subtree in the expression’s abstract syntax tree (AST), and

the permutation specifies a mapping from the index space of the axiom’s subtree to the index

space of the pattern. The plan in Figure 5.2b specifies a generic tactic for cancelling opposite

constants; for example, it solves p1 in one step by reducing the expression (+ x 1 -1) to

(+ x) (Figure 5.2c). In essence, plans are functional specifications of tactics that can help

solve the example problems in fewer steps—and that are amenable to sound and efficient

synthesis.

Tactics. Given a set of plans, RuleSy synthesizes the corresponding tactics (Section 5.5.2),

expressed in the same language (Section 5.3) as the input axioms. Figure 5.3 shows two sam-

ple tactics synthesized for the plans (e.g., Figure 5.2b) mined from the toy examples and

axioms. These tactics perform fewer tree edits than the axiom sequences they replace, leading
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def A: # additive identity (+ 0 e . . .)→ (+ e . . .)
with (+ a@num _ etc):
if a = 0:
do remove a

def B: # constant folding (+ c1 c2 . . .)→ (+ c . . .), c = c1 + c2
with (+ a@num b@num _ etc):
if true:
do remove b and replace a with apply (+ a b)

def C: # adding opposites (= (+ e0 . . .) e1)→ (= (+ (− e0) e0 . . .) (+ e1 (− e0)))
with (= L@(+ a etc) R@_):
if true:
do replace L with (- a) :: L and

replace R with (+ (- a) R)

(a) Axioms in the RuleSy language (Section 5.3).

Problem Representation
p0 : x+ 0 = 3 (= (+ x 0) 3)
p1 : x+ 1 +−1 = 5 (= (+ x 1 -1) 5)
p2 : x+ 2 = −4 (= (+ x 2) -4)

(b) Example problems.

f(R,G) = α
∑
R∈R

RuleCost(R) + (1− α)
∑
G∈G SolCost(G)

|G|

(c) A sample objective function, where α ∈ [0, 1], and G contains the shortest solutions to the
example problems obtained with the rules R.

Figure 5.1: The inputs to RuleSy for the toy algebra domain.
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(= (+ x 0) 3)

(= x 3)

A

(= (+ x 2) -4)

(= (+ -2 2 x) (+ -4 -2))

C

(= (+ 0 x) (+ -4 -2))

B

(= (+ -2 2 x) -6)

B

(= x (+ -4 -2))

A

(= (+ 0 x) -6)

B

(= x -6)

B A

B

(= (+ x 1 -1) 5)

(= (+ 0 x) 5)

B

(= x 5)

A

(a) All shortest solutions for the toy algebra problems and axioms (Figure 5.1).

[〈B, 〈[], {[] 7→ [], [1] 7→ [2], [2] 7→ [3], [3] 7→ [1]}〉〉,
〈A, 〈[], {[] 7→ [], [1] 7→ [2], [2] 7→ [1]}〉〉]

(b) A plan for applying the axioms B ◦A.

Input Axiom Output
(= (+ x 1 -1) 5) B (= (+ x 0) 5)
(= (+ x 0) 5) A (= (+ x) 5)

(c) Using the plan in (b) to solve the problem p1 (Figure 5.1b).

Figure 5.2: A sample plan (b) mined from the shortest solutions (a) to the toy algebra
problems. The plan specifies a tactic for canceling opposite constants (c).
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to cheaper solutions. For example, the tactic BA performs two tree edits, while the axiom

sequence B ◦ A performs three such edits. But the tactic also applies to fewer problem

states than the axioms. RuleSy uses discrete optimization, guided by the input objective,

to decide which axioms and tactics to include in a domain model.

# Canceling opposite constants : (+ c −c e . . .)→ (+ e . . .).
define BA:

with (+ x@num y@num _ etc ):
if x = apply (- y)
do remove x and remove y

# Move negated constant to other side with only one other term:
# (= (+ c1 e . . .) c2)→ (= (+ e . . .) c), c = c2 − c1.
define CBAB:

with (= (+ x@num _ etc) y@num ):
if true:
do remove x and

replace y with apply(- y x)

Figure 5.3: Sample tactics synthesized for the toy plans (e.g., Figure 5.2b).

Domain Models. The RuleSy optimizer (Section 5.5.3) searches the axioms and tactics

for a domain model that is sufficient to solve the example problems, while minimizing the

objective over all shortest solutions obtainable with such models. Figure 5.4 shows two

sample optimal models for the toy algebra domain. The models R0.1 and R0.9 minimize

the toy objective (Figure 5.1c) for different values of the weighting factor α (0.1 and 0.9,

respectively). The model R0.1 includes more rules because lower values of α emphasize

solution efficiency over domain model economy. RuleSy helps with rapid navigation of

such design tradeoffs.

R0.1 = {A,BA,CBAB} R0.9 = {BA,CBAB}

Figure 5.4: Optimal domain models for toy algebra (Figures 5.1 and 5.3).
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5.3 A Domain-Specific Language for Tree Rewrite Rules

This section presents the RuleSy domain-specific language (DSL) for specifying pattern-

condition-action rules in the algebra domain. The language is parametric in its definition

of problem states. For concreteness, we present an instantiation of RuleSy for the domain

of K-12 algebra. Section 5.6 generalizes this presentation to other domains, particularly the

semantic proof domain described in Chapter 4.

5.3.1 Specifying Problems and Rules.

RuleSy for algebra represents problems and problem states as abstract syntax trees, which

we call terms (Definition 5.1, Figure 5.5). These trees have algebraic operators at every

internal node and variables or constants at the leaf nodes.2 In algebra, constants range over

integers, and variables range over symbolic literals that are equal up to alpha renaming. The

definition of terms specifies which operators are commutative; RuleSy assumes that that two

terms are semantically equivalent if they are equal up to reordering of commutative operators

(Definition 5.3). As we shall see, rewrite rules are designed to abstract over commutativity,

and the solving procedure searches for ways to apply rules under any possible permutation

of the term.

term ::= (op {term}∗) | value
value ::= numeric literal | variable identifier

op ::= commutativeop | - | /
commutativeop ::= + | * | =

Figure 5.5: Syntax for states in the algebra DSL, which we call terms. The notation {form}∗
means zero or more repetitions of the given form. RuleSy relies on operators being parti-
tioned by commutativity.

2Note that, as defined, term syntax admits nonsensical terms such as (+ 2 (= 7 (* 1) 8)). RuleSy
does not reason about the validity of terms in this sense, and the guarantees of the framework are with
respect to valid terms.
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Rules in the algebra domain can be viewed as tree rewrite rules between semantically

equivalent terms. Patterns describe a (partial) structure that an input term must match.

Conditions specify further constraints on the subterms of the input. Actions are sequences

of term editing operations, namely, removing or replacing a subterm. The toy problems

(Figure 5.1b) and rules (Figures 5.1a and 5.3) from Section 5.2 are all valid terms and

programs in the algebra DSL.

Definition 5.1 (Terms). A term is a tree with operators on internal nodes and variables

or constants at the leaf nodes that defines a problem state (Figure 5.5), where the set of

operators is partitioned into commutative and non-commutative operators. For presentation,

we sometimes write term(o, v1, . . . , vn) to mean the term (o v1 ... vn).

Definition 5.2 (Tree Indices). A tree index is a finite sequence of positive integers that

identifies a subterm of a term as follows:

ref (t, []) = t;

ref ((o t1 . . . tk), [i]) = ti if 1 ≤ i ≤ k;

ref ((o t1 . . . tk), [i, j, . . .]) = ref (ti, [j, . . .]) if 1 ≤ i ≤ k;

ref (t, idx) = ⊥ otherwise.

That is, each element of a tree index represents child indices for successively deeper parts of

a tree. We write refs(t) for the set {idx | ref (t, idx) 6= ⊥}. That is, refs(t) is the set of all

tree indices on which ref is defined.

Definition 5.3 (Tree Permutations). Let t, tπ be terms where |refs(t)| = |refs(tπ)|. Let π

be a bijective mapping from refs(t) to refs(tπ). This function π is a tree permutation for t if

it preserves structure (parent-child relationships are preserved) and respects commutativity

(reorders only children of commutative operators). That is, for all [i1, . . . , in] ∈ refs(t) where

n ≥ 1, if π([i1, . . . , in]) = [j1, . . . , jn], then π([i1, . . . , in−1]) = [j1, . . . , jn−1], and either in = jn

or ref (t, [i1, . . . , in−1]) = (op ...) where op is commutative. We write Π(t) to denote the set of

all tree permutations of t, and tπ to denote the term obtained by applying π to t. That is, the

term where refs(tπ) = {π(idx) | idx ∈ refs(t)} and ∀idx ∈ refs(t). ref (t, idx) = ref (tπ, π(idx)).
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The identity permutation for a term t is the identity mapping from refs(t) to itself.

As a notational convenience, for any function φ with a domain that is a superset of refs(t)

and where the restriction φ�refs(t) of φ to the domain of refs(t) is a tree permutation for t,

we write tφ to mean tφ�refs(t) . Thus, we use the identity function I to mean the identity

permutation, using this notational shorthand to implicitly mean I�refs(t).

Definition 5.4 (Term Isomorphisms). A tree permutation is an isomorphism: if there exists

a tree permutation between terms s and t, then s and t are semantically equivalent since

they are equal up to reordering of commutative operators. We say s and t are isomorphic,

written s ' t.3

5.3.2 Representation of Bindings and the Semantics of Rule Firing

In considering how rules apply to problem states, we must consider both applying rules to

various subterms and applying rules with respect to commutative operators in the domain.

To illustrate, consider firing the rule A from Figure 5.1a on the term t = (= (+ x 0) 2)

(we will return to this example throughout the section). A is defined to apply to a term with

+ at the root and a 0 as the immediate first child of the root. Applying A to t requires both

specifying a subterm of t and a permutation of t’s commutative operators (in this case to

addition) that align t with A’s pattern. In that sense, A is a functional template for a more

general relation that may apply A in multiple ways to the same state. In order to keep rules

as functions while allowing for multiple applications, we factor out this information about

how a rule is applied in a second input to the program, called a binding.4 We formalize this

definition of a binding below. This definition relies on the definition of patterns. Patterns

are defined in more detail later in this section; their syntax is shown in Figure 5.6. Briefly,

3When we say two terms are isomorphic, we are specifically limiting ourselves to say they are permutations
of each other, not that they are semantically equivalent in general.
4One might ask why we are are introducing machinery to permute the pattern to match the term rather
than the (arguably more natural) approach of having fire take care of such permutations itself. While
this would keep the rule semantics simpler, our approach better supports specification mining: in order to
capture the behavior of a sequence of axioms, we also need to capture information about the permutations
used to make that sequence work. The binding does precisely that.
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patterns describe a subtree to be matched against a term.

Definition 5.5 (Scopes). Scopes describe when tree indices are valid for patterns. A tree

index idx is in the scope of a pattern p if scope(p, idx) 6= ⊥ where:

scope(p, []) = p;

scope(a@p, i) = scope(p, i);

scope((o p1 . . . pk), [i]) = pi if 1 ≤ i ≤ k;

scope((o p1 . . . pk), [i, j, . . .]) = scope(pi, [j, . . .]) if 1 ≤ i ≤ k;

scope((o p1 . . . pk etc), idx) = scope((o p1 . . . pk), idx);

scope(p, idx) = ⊥ otherwise.

We write scope(p) to denote the set {idx | scope(p, idx) 6= ⊥}. We write varindex(p, a) = i if

scope(p, i) = a@q otherwise ⊥ to denote the index (relative to the pattern) of the subpattern

associated with variable a, and reference(p, a) = q if varindex(p, a) 6= ⊥ otherwise ⊥ with

scope(p, varindex(p, a)) = a@q to denote the subpattern associated with variable a.

Definition 5.6 (Bindings). Let γ be a tree index and π be a tree permutation with range

ran(π). We say β = 〈γ, π〉 is a binding for a term t if π is a tree permutation for ref (t, γ).

We say that the tuple β = 〈γ, π〉 is a binding for a pattern p iff π covers the scope of p, that

is, scope(p) ⊆ ran(π). Intuitively, γ says which subterm of t should be matched to p, and π

says how to permute that subterm to align it with p. That is, ref (t, γ)π aligns with p. The

identity binding Iβ is 〈[], I〉.5 We write root(〈γ, π〉) := γ and permutation(〈γ, π〉) := π for the

root index and permutation of a binding, respectively.

Example 5.7 (Bindings). To illustrate bindings for algebra, consider again the example

of firing the rule A on t = (= (+ x 0) 2). The set refs(t) of all valid tree indices for t

consists of the indices [], [1], [1, 1], [1, 2], [2], which identify the subterms t, (+ x 0), x, 0, 2,

respectively (Definition 5.2). Since both + and = are commutative, valid tree permutations

Π(t) for t consist of the following mappings (Definition 5.3):

5The identity binding Iβ is using the described notational shorthand for the indentity permutation, where
〈[], I〉 for a given term t is notation for 〈[], I�refs(t)〉.
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tπ0 = t π0 = {[] 7→ [], [1] 7→ [1], [1, 1] 7→ [1, 1], [1, 2] 7→ [1, 2], [2] 7→ [2]}

tπ1 = (= (+ 0 x) 2) π1 = {[] 7→ [], [1] 7→ [1], [1, 1] 7→ [1, 2], [1, 2] 7→ [1, 1], [2] 7→ [2]}

tπ2 = (= 2 (+ x 0)) π2 = {[] 7→ [], [1] 7→ [2], [1, 1] 7→ [2, 1], [1, 2] 7→ [2, 2], [2] 7→ [1]}

tπ3 = (= 2 (+ 0 x)) π3 = {[] 7→ [], [1] 7→ [2], [1, 1] 7→ [2, 2], [1, 2] 7→ [2, 1], [2] 7→ [1]}

Considering the subtrees of t, valid tree permutations for ref (t, [1]) consist of:

ref (t, [1])π4 = (+ 0 x) π4 = {[] 7→ [], [1] 7→ [1], [2] 7→ [2]}

ref (t, [1])π5 = (+ x 0) π5 = {[] 7→ [], [1] 7→ [2], [2] 7→ [1]}

The subtrees at the remaining indices ([1, 1], [1, 2] and [2]) consist of a single value, so the

only valid tree permutation for those subtrees is the mapping π6 = {[] 7→ []}.

Next, we observe that the scope (Definition 5.5) of A’s pattern consists of the indices

{[], [1], [2]}. The permutations for which their range is a superset of the scope of A’s pattern

are {π0, π1, π4, π5}. Finally, we use these permutations of t and its subterms and the scope

of A to compute all valid bindings for A and t (Definition 5.6):

{〈[], π0〉, 〈[], π1〉, 〈[1], π4〉, 〈[1], π5〉}

Though all of these bindings are valid, only one (〈[1], π5〉) is a binding under whichA actually

applies to t. We will return to this example to illustrate that application after defining the

syntax and semantics of the DSL.

5.3.3 Semantics of Patterns, Conditions, and Actions.

Rule programs (Figure 5.6) denote partial functions from terms and bindings to terms. The

semantics of these programs is an instantiation of the general RuleSy semantics (Figure 4.8).

Here, we give domain-specific meaning to contexts, patterns, conditions, and actions. Fig-

ure 5.7 shows the types for the various semantic functions and the definition of those functions

is shown in Figure 5.8. These semantics are well-defined only when the binding is valid for

both the pattern and the input term (Definition 5.6).
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program ::= with pattern: if condition: do action
pattern ::= _ | var | var@pattern | matcher | (op {pattern}∗ [etc])
condition ::= pred | pred and pred
pred ::= true | ref = const | ref != const
action ::= cmd {and cmd}∗
cmd ::= remove ref | replace ref with expr
expr ::= const | obj
obj ::= (op {expr}∗) | expr :: ref | expr :: obj
const ::= value | ref | apply(op {const}∗)
ref ::= var
var ::= identifier
matcher ::= num | var | base

Figure 5.6: Syntax for the algebra DSL. The notation {form}∗ means zero or more repetitions
of the given form, and the notation [form] means zero or one repetitions. Both op and value
are the same as for term syntax (Figure 5.5).

The function P gives meaning to patterns as partial functions from terms and bindings to

contexts. Patterns for tree-rewrite rules represent trees to be matched against some subterm

of term. Potential patterns include matching against a basic value (using e.g., num, var),

a complex term with a particular operator op and its arguments (using (op ...)), or any

term (using _). Patterns may also include variables (using x@p), which are used to reference

parts of the matched term in conditions and actions. For tree-rewrite rules, a context maps a

variable x of the pattern to values representing subtrees of the input term. These values have

two parts and are defined as a tuple 〈i, t〉, representing an address and value, respectively.

The address i, for applying actions, is the tree index of x in the original input term. The

value t is the subterm of the input term pointed to by x, used in expressions within the

condition and action.

The semantics of P are defined by the semantic functions M and B. The function M

(for “match”) gives meaning to the pattern, checking that the input term fits the pattern
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under the binding. The function B (for “bind”) gives meaning to the variables in the pattern,

extracting the tree indices to which they point. The function matches gives meaning to the

domain-specific matcher patterns.

The function C gives meaning to conditions as predicates on contexts. The function A

gives meaning to actions as functions from contexts and terms to terms. Actions apply a

set of parallel functional edits to disjoint subterms of the input term t. The function E (for

“evaluate”) gives meaning to subexpressions of the condition and action that map contexts

to terms. As defined by E , actions can create new terms, and both conditions and actions

can evaluate expression terms with literal arguments (via apply). operator gives meaning

to apply by giving meaning to the domain-specific operators that appear in terms.

binding = tree index× tree permutation
context = var → tree index× term

P : pattern × term× binding→ context ∪ {⊥}
C : condition × context→ boolean
A : action × term× context→ term
M : pattern × term→ boolean
B : pattern × tree index→ 2var×tree index

E : expr × context→ term
matches : matcher × value → boolean
operator : operator × term sequence → term

Figure 5.7: Types for the algebra DSL’s inputs/outputs and semantic functions. A binding
〈γ, π〉 is a tuple of a tree index and a tree permutation (see Definition 5.6), and contexts are
mappings from variables in the pattern to a tuple representing the address of that variable (for
applying actions) and the value of the subterm of that variable (for evaluating expressions).

Well-formed Rule Programs

The meaning of rules is defined only for well-formed programs (Definition 5.8), which contain

no invalid references. If a term matches the pattern of a well-formed program, then every

reference in that program specifies a unique variable declared in the pattern. Additionally,

apply and :: expressions reference subterms of the right kind and have appropriate arity;



94

Jwith p: if c: do aK(t, 〈γ, π〉) = if σ 6= ⊥ ∧ CJcKσ then AJaK(t, σ) else ⊥
where σ = PJpK(t, 〈γ, π〉)

PJpK(t, 〈γ, π〉) = if MJpKt′ then
{x 7→ 〈concat(γ, π−1(i)), ref (t′, i)〉 | 〈x, i〉 ∈ BJpK[]}
else ⊥ where t′ = ref (t, γ)π

MJ(o p1 ... pk)Kt = t =̇ term(o, t1, ... , tk) ∧ ∀1≤i≤kMJpiKti
MJ(o p1 ... pk etc)Kt = t =̇ term(o, t1, ... , tn) ∧ k ≥ n ∧ ∀1≤i≤kMJpiKti
MJ_Kt = true
MJvarKt = true
MJvar@pKt = MJpKt
MJconstructorKt = t is a value ∧ matchesJconstructorKt
BJ(o p1 ... pk)Kidx = ⋃

1≤i≤k BJpiKconcat(idx , [i])
BJ(o p1 ... pk etc)Kidx = BJ(o p1 ... pk)Kidx
BJ_Kidx = ∅
BJvarKidx = BJvar@_Kidx
BJvar@pKidx = BJpKidx ∪ {〈var , idx〉}
BJconstructorKidx = ∅
CJtrueKσ = true
CJr = eKσ = EJrKσ =̇ EJeKσ
CJr != eKσ = EJrKσ ˙6= EJeKσ
CJ b1 and b2Kσ = CJb1Kσ ∧ CJb2Kσ

AJ a1 and a2K(t, σ) = (AJa1K‖AJa2K)(t, σ)
AJremove rK(t, σ) = remove(t, i) where 〈i, v〉 = σ[r]
AJreplace r with eK(t, σ) = replace(t, i, EJeKσ) where 〈i, v〉 = σ[r]
EJ(o e1 ... ek)Kσ = term(o, EJe1Kσ, ... , EJekKσ)
EJ e1 :: e2Kσ = constree(EJe1Kσ, EJe2Kσ)
EJapply(o e1 ... ek)Kσ = operatorJoK(EJe1Kσ, ... , EJekKσ)
EJvalueKσ = value
EJvarKσ = v where 〈i, v〉 = σ[var ]
cons(h, [i1, ... , in]) = [h, i1, ... , in]
replace(t, [], s) = s
replace((o t1 ... tk), cons(i, lst), s) = term(o, t1, ... , ti−1, replace(ti, lst, s), ti+1, ... , tk)
remove((o t1 ... tk), [i], s) = term(o, t1, ... , ti−1, ti+1, ... , tk)
remove((o t1 ... tk), cons(i, lst), s) = term(o, t1, ... , ti−1, remove(ti, lst), ti+1, ... , tk)
constree(t, (o t1 ... tk)) = term(o, t, t1, ... , tk)
concat([i1, ... , in], [j1, ... , jm]) = [i1, ... , in, j1, ... , jm]

Figure 5.8: Semantics for the tree-rewrite DSL. The notation ‖ stands for parallel function
composition (actions are independent); other notation is described in Section 4.2 and Defi-
nitions 5.1–5.6. Semantics for the functions operator and matches are shown in Figure 5.9.
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operatorJ+K(x1, ... , xk) = ∑
i∈{1,...,k} xi

operatorJ*K(x1, ... , xk) = ∏
i∈{1,...,k} xi

operatorJ-K(x) = −x
operatorJ-K(x, y) = x− y
operatorJ/K(x, y) = x/y

matchesJnumKt = t is a numeric literal value.
matchesJvarKt = t is a variable identifier value.
matchesJbaseKt = matchesJnumKt ∨matchesJvarKt

Figure 5.9: Algebra-specific semantics for the DSL. The meaning of these can change to
support other domains like semantic proofs.

the program’s actions edit disjoint subtrees of the term’s AST; and (in)equality predicates

only compare subterms matched by terminal patterns. Well-formed programs are therefore

free of runtime errors caused by invalid references to subterms.

Definition 5.8 (Well-Formed Programs). Let R = with p: if c: do a1 and ... and an

be a program in the DSL (Figure 5.6). We say that R is well-formed if the following hold:

• The pattern p contains no duplicate variable names.

• For all references r contained in c and a1 through an, varindex(p, r) 6= ⊥.

• reference(p, r) = (op ...) for all expressions e :: r.

• reference(p, r) 6= (op ...) for all references r in all (in)equality predicates.

• Let rk denote the first argument to a command ak in R. For all distinct ai, aj in R,
varindex(p, ri) is not a prefix of varindex(p, rj) and vice versa (this means that actions
must apply to disjoint subtrees and are therefore independent of the order in which
they are applied).

• For all apply expressions, the arguments are of the right kind and arity; this is domain-
specific. For algebra, this means that reference(p, r) = num for all references r in apply
expressions and all apply expressions have operator arguments and arities compatible
with the semantics in Figure 5.9.
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Example 5.9 (A Complete Example Rule Application). To illustrate the semantics of rules,

we return to our example of firing the rule A on the term t = (= (+ x 0) 2). We’ll consider

the binding β = 〈γ, π〉 where γ = [1] and π = {[] 7→ [], [1] 7→ [2], [2] 7→ [1]}, and define p, c,

and a to be the pattern, condition, and action of A, respectively. Thus, ref (t, γ) = (+ x 0)

and ref (t, γ)π = (+ 0 x). Looking first at the pattern semantics, we have:

MJpKref (t, γ)π = MJ(+ a@num _ etc)K(+ 0 x)

= (+ 0 x) =̇ (+ t1 ... tn) ∧ 2 ≥ n ∧MJa@numK0 ∧MJ_Kx

= true ∧ true ∧MJnumK0 ∧ true

= true ∧ true ∧ true ∧ true

= true

Thus, t matches p under β. Next, B is defined only with respect to the pattern rather than

the input term. We have:

BJpK[] = BJ(+ a@num _ etc)K[]

= BJa@numKconcat([], [1]) ∪ BJ_Kconcat([], [2])

= BJa@numK[1] ∪ BJ_K[2]

= (BJnumK[1] ∪ 〈a, [1]〉) ∪ ∅

= (∅ ∪ 〈a, [1]〉) ∪ ∅

= {〈a, [1]〉}

That is, a is the only variable in the pattern and it points to the subterm at index [1] (relative

to the pattern). So by the definition of P , we have that the context for this application is
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PJpK(t, 〈γ, π〉) = if MJpKref (t, γ)π then

{x 7→ 〈concat(γ, π−1(i)), ref (ref (t, γ)π, i)〉 | 〈x, i〉 ∈ BJpK[]}

else ⊥

= if true then

{x 7→ 〈concat(γ, π−1(i)), ref (ref (t, γ)π, i)〉 | 〈x, i〉 ∈ {〈a, [1]〉}}

else ⊥

= { a 7→ 〈concat(γ, π−1([1])), ref (ref (t, γ)π, [1])〉}

= { a 7→ 〈concat([1], [2]), ref ((+ 0 x), [1])〉}

= { a 7→ 〈[1, 2], 0〉}

That is, there is one variable a, the index in t to which a was bound is [1, 2], and the value

of that subterm is 0. Let σ = { a 7→ 〈[1, 2], 0〉} be this context.

Looking now at the condition, we have:

CJcKσ = CJa = 0Kσ

= CJaKσ = EJ0Kσ

= snd(σ[a ]) = 0

= 0 = 0

= true

Thus, the condition is true. With the pattern matching and the condition holding, we can

apply the action:

AJaK(t, σ) = AJremove aK(t, σ)

= remove(t, i) where 〈i, v〉 = σ[a ]

= remove((= (+ x 0) 2), [1, 2])

= (= (+ x) 2)

Putting it all together, the semantics of A applied to the term (= (+ x 0) 2) and the

binding 〈[1], {[] 7→ [], [1] 7→ [2], [2] 7→ [1]}〉 is the term (= (+ x) 2).6

6Note the unary + in the result term. As RuleSy does not implicitly understand the semantics of terms,
it does not know that this can be simplified to (= x 2). The framework relies on such a rewrite rule being
provided as an axiom. The axioms used in our implementation are listed in Section 5.11.
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5.4 Characterizing Sound and Useful Rules

Before we can use our DSL to synthesize sound and useful tactic rules, we must be precise

about exactly what we mean by sound and useful. In this section we formalize both of these

notions. They center around using a set of axiom rules that (along with the theory of integers

and term isomorphism) characterize a computable equivalence relation used both to verify

tactics and ensure they are useful.

Within the domains of sovling algebra equations, doing semantic logic proofs, or solving

term-equivalence problems in general, educators teach students to use a set of rules rather

than a single general algorithm. Thus, rather than use an oracle for all equivalences, RuleSy

will work with a sound subset of equivalences, defined by the axioms RuleSy takes as input

(along with a bit more, explained in this section). Of course, the reason RuleSy has any

works it needs to do at all is that, while these axioms make it possible to solve a wide range

of problems, they do not do so efficiently. The tactics RuleSy aims to learn are no more

expressive that the set of axioms, but they can be more efficient (for humans) on a wide

range of problems we care about teaching.7 Characterizing a subset of term equivalences

using axioms is, incidentally, useful because we might not even be able to write down a fully

general algorithm (if, say, we have non-linear integer arithmetic). However, the more salient

motivation in this context for dealing with axioms and tactics is because that is what humans

use to solve algebra problems.

5.4.1 Soundess of Rules

RuleSy relies on the domain definition to guarantee the soundness of synthesized rules. As

discussed in Section 4.4.1, our ideal domain description would take the form of an oracle

specifying what it means for any rule to be correct: namely, a relation E describing all

semantically equivalent terms. Given any program R (a partial function from terms and

7And, as we’ll see in the technical section, we only bother attempting to learn rule programs for specifica-
tions which are guaranteed to shorten a solution path on at least one problem in the given set of training
examples.
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bindings to terms), we can say that R is sound if and only if all pairs of terms mapped by R

are equivalent under E . That is, the set {〈s, t〉 | t ∈ fire(R, s)} is a subset of E . The question

before us is how to compute this equivalence relation in order to verify rules on top of a set

of axiomatic rules.

First, what does semantic equivalence mean, in general? Algebraic terms have meaning

given by assigning values to variables. In our setting, we can say that two terms s and t are

equivalent if and only if, for any assignment of the variables in s and t to integer values, the

terms s and t with their variables substituted according to this assignment evaluate to the

same value under the theory of integer arithmetic. Incidentally, because our terms are non-

linear (they have division), the theory of integers is undecidable, meaning that we cannot

compute this relation directly.

We can, however, compute a useful subset of this relation on which we can base soundness,

which will in turn form the basis for verification. For example, the trivial identity relation

is such a subset: two terms are obviously semantically equivalent if they are syntactically

identical. The term isomorphism described in Definition 5.4 is a slightly better one: the

meaning of commutative operators (by definition) does not change when the arguments are

reordered, so any two terms that are permutations of each other will evaluate to the same

value under any variable assignment. Here, “better” means that the equivalence relation

defined by term isomorphism is a strict superset of the identity relation. We want the largest

possible equivalence relation so that we can verify as many potential rules as possible.

As another example, because the semantics of algebra are defined recursively on the

structure of the term, we can replace subterms with semantically equivalent subterms and

preserve overall equivalence. That is, given a term t and an index γ, if ref (t, γ) is semantically

equivalent to another term s, then t is semantically equivalent to replace(t, γ, s). This, on its

own, does not specify an equivalence relation, but it does take another equivalence relation

and make it larger by merging equivalence classes.

In order to reach a sufficiently large equivalence relation that can characterize the sound-

ness of interestingly complex rules, RuleSy relies on axiom rules, taking a set of axioms A
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as input.8 In our implementation, A is a set of programs in the DSL, though in principle

these axioms could be any kind of (partial) function of terms to terms. As made clear by

their name, RuleSy assumes these axioms to be sound programs with respect to a hypo-

thetical equivalence-deciding oracle. Each individual axiom describes pairs of terms that

belong to the same equivalence class. Two terms are equivalent if there is a sequence of

axiom applications from one to the other.

Taken together, the transitive closure of term isomorphisms, equivalent subterm replace-

ment, and axiom application define a computable equivalence relation of semantically equiv-

alent terms. We formally characterize this with Definition 5.10. The fire function captures

the closure of a given axiom over isomorphism and equivalent subterm replacement. Thus,

intuitively, a program is sound if, for any application of that program, there exists a sequence

of axioms that can be chained to match that behavior using fire.

Definition 5.10 (Soundess of Rules). Let R be a program in the algebra DSL. We say that

R is sound with respect to a set of axioms A if, for every t, β, tn where JRK(t, β) = tn 6= ⊥,

there exist terms t0, . . . , tn−1 with t ' t0, and for all i ∈ {1, ... , n}, there exists term s and

A ∈ A such that ti ' s and s ∈ fire(A, ti−1).

5.4.2 Useful Rules

As discussed in Section 4.4.1, the useful of tactics has multiple aspects. First, rules should

apply to problems the framework user cares about (i.e., the input training problems), and

those rules should enable more efficient solving of those problems than the axioms alone. As

we discuss in Section 5.5.3, RuleSy measures this efficiency by looking at both the number

of steps required and the relative size of rules used. Our specification mining algorithm only

considers specifications that could potentially lead to rules that lead to more efficient solving.

The other major aspect of usefulness is how general rules are. We want rules to apply

to as wide a variety of states as possible. In the context of tree-rewrite rules, characteriz-

8The axioms used in our evaluation are listed in Section 5.11.
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ing generality is fairly straightforward: because specifications are defined by a sequence of

axioms, specifications describe general behavior. Thus, our goal is to synthesize rules that

cover as many of the state transitions defined by the specification as possible. Section 5.5.2

describes how we achieve this.

5.5 Rule Mining, Synthesis, and Optimization

Given an educational objective, example problems, and axioms for solving those problems,

RuleSy produces an optimal domain model in three stages: (1) specification mining, (2)

rule synthesis, and (3) domain model optimization. The framework has the same overall

structure as presented in Figure 4.10. This section presents the algorithms underlying each

stage and states their guarantees. Proofs for theorems can be found in Section 5.10.

5.5.1 Specification Mining

Specification mining takes as input a set of examples and a domain definition as a set of

axioms, and produces a set of specifications for tactic rules. The core technical contribution

behind this stage is our definition of tactic specifications and the algorithm for mining them.

We describe the key challenge in specifying tactics; show how our notion of execution plans

addresses it; and present our FindSpecs algorithm for computing these plans.

Specifying Sound Rule Behavior

Our output specifications must describe sound and useful rule behavior, and RuleSy must

produce them using the domain definition and example problem inputs.

Given a set of axioms and example problems, our first challenge is how to represent spec-

ifications for sound tactics. To enable efficient synthesis of useful rules, a tactic specification

should capture the semantics of a rule—i.e., a partial function—that can help solve some

problems in fewer steps than the axioms alone. But natural forms of specification, such as

axiom sequences, do not satisfy this requirement, as we illustrate in Example 5.11.
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Example 5.11. To see why, consider the axiom sequence I◦B, where I implements factoring

(Figure 5.10) and B implements constant folding (Figure 5.1a).9 Intuitively, we would like

I◦B to specify the tactic IB for combining like terms (Figure 5.10). Obvious interpretations

of this sequence do not capture the meaning of the tactic. If we interpret I ◦ B using the

fire semantics, the result is a non-functional relation that includes the meaning of multiple

tactics. For example, firing I ◦ B on the term (+ (* 2 x) (* 3 x) (* 4 y) (* 5 y))

produces both (+ (* 5 x) (* 4 y) (* 5 y)) and (+ (* 9 y) (* 2 x) (* 3 x)). So

specifications need to constrain the application of the axioms. If we instead interpret I ◦

B as the composition of the partial functions denoted by its axioms naïvely fixed with

identity bindings—i.e., as λt.JBK(JIK(t, Iβ), Iβ)—the resulting relation is empty and thus

fails to specify a useful tactic.

# (+ (∗ e0 e) (∗ e1 e) . . .)→ (+ (∗ (+ e0 e1) e) . . .)
def I:

with (+ (* a x) r@(* b y) etc):
if x = y:
do remove r and replace a with (+ a b)

# (+ (∗ c0 e) (∗ c1 e) . . .)→ (+ (∗ c e) . . .), c = c0 + c1
def IB:

with (+ (* a@num x) r@(* b@num y) etc):
if x = y:
do remove r and replace a with apply (+ a b)

Figure 5.10: The tactic IB for combining like terms combines factoring (I) and constant
folding (B in Figure 5.1a), but no interpretation of I ◦B captures its behavior.

We address the challenge of specifying tactic rules with execution plans. An execution

plan (Definition 5.14) is a partial function from terms to terms, encoded as a sequence of

execution steps (Definition 5.13). An execution step combines a program R with a binding

β for R’s pattern. An execution plan composes a sequence of such rule applications. For

9The names I and B come from the axiom table shown in a later section in Table 5.1b.
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example, the plan [〈I, 〈[], I〉〉, 〈B, 〈[1, 1], I〉〉] captures the behavior of the combine-like-terms

rule on terms of the form (+ (* c0 e) (* c1 e) ...). Moreover, firing a program that imple-

ments this plan (e.g., IB) captures the common understanding of what it means to combine

like terms when solving algebra problems. Execution plans thus satisfy our requirement for

tactic specifications by defining useful functional relations, and as a sequence of axiom appli-

cations, execution plans capture sound rule behavior as defined by Definition 5.10. RuleSy

will attempt to synthesize rules for each individual execution plan.

Definition 5.12 (Tree Permutation Extensions). We say a permutation φ extends a permu-

tation π iff φ agrees with π on all places π is defined; that is, π ⊆ φ. In particular, if φ is a

permutation for term t that extends π, we say that φ is an extension of π to t.

Definition 5.13 (Execution Step). An execution step 〈R, β〉 is a tuple consisting of a rule

program R and a valid binding β for R’s pattern.

Definition 5.14 (Execution Plan). An execution plan S is a finite sequence of execution

steps [〈R1, 〈γ1, π1〉〉, . . . , 〈Rn, 〈γn, πn〉〉]. The plan S composes its steps as follows: JSKt0 = tn

if there exist permutations φ1, . . . , φn such that JRiK(ti−1, 〈γi, φi〉) = ti, φi extends πi, and

ti 6= ⊥ for all i ∈ {1, ... , n}; otherwise, JSKt0 = ⊥. The plan S is general if the step indices

root(β1), . . . , root(βn) have the empty index [] as their longest common prefix.

Given a term t and binding β = 〈γ, π〉, we define the function apply as:

apply(S, t, 〈γ, π〉) = replace(t, γ, JSKref (t, γ)π)

That is, apply(S, t, β) applies the plan to the subterm of t specified by β.

Note that, as defined, a plan doesn’t fix the bindings exactly, but rather fixes them

partially. Specifically, permutations can be extended (Definition 5.12) when applying a plan.

Example 5.15 illustrates why this is necessary: we want plans to be able to apply to terms

of various shapes, where extra subterms that are not impacted by the rule applications are

allowed. Defining the semantics of plans in this way, with respect to extended permutations,

is necessary to allow for tactics that apply to various shapes (e.g., have etc or _ in the
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pattern).

Example 5.15 (Plan Semantics). We return to the example from Example 5.11 to illustrate

plan semantics, explicitly writing out the permutations (rather than using the notational

shorthand) to make it clear why extensions are necessary. Let S = [〈I, 〈[], π1〉〉, 〈B, 〈[1, 1], π2〉〉]

be the plan capturing the intuitive notion of combining like terms, where π1 = {[] 7→

[], [1] 7→ [1], [1, 1] 7→ [1, 1], [1, 2] 7→ [1, 2], [2] 7→ [2], [2, 1] 7→ [2, 1], [2, 2] 7→ [2, 2]} and

π2 = {[] 7→ [], [1] 7→ [1], [2] 7→ [2]}. Given the term t1 = (+ (* 3 x) (* 5 x)), we have:

JBK(JIK(t1, 〈[], π1〉), 〈[1, 1], π2〉) = JBK((+ (* (+ 3 5) x)), 〈[1, 1], π2〉) = (+ (* 8 x))

Any permutation trivially extends itself, so by Definition 5.14 we have JSKt1 = (+ (* 8 x)).

But now consider t2 = (+ (* 3 x) (* 5 x) 4). Intuitively, the plan S should still apply

to t2 because the extra 4 on the end doesn’t impact the ability of either rule in the plan to

apply. However, 〈[], π1〉 is not a valid binding for t2 because the domain doesn’t cover all of

refs(t2). This is why the semantics of plans allows for extensions of permutations; extending

π1 to π′1 = π1 ∪ {[3] 7→ [3]}, we find that 〈[], π′1〉 is a valid binding for t2. Thus:

JBK(JIK(t2, 〈[], π1〉), 〈[1, 1], π2〉) = JBK((+ (* (+ 3 5) x 4)), 〈[1, 1], π2〉)

= (+ (* 8 x) 4)

Therefore, JSKt2 = (+ (* 8 x) 4).

Computing Plans

RuleSy mines execution plans from a set of example problems and axioms using the Find-

Specs procedure shown in Figure 5.11. These example problems serve to bias RuleSy into

finding useful rules; the synthesized tactics will apply to problem states similar to those

given as example problems. FindSpecs first obtains a solution graph (Definition 5.16) of all

shortest solutions to each example problem (line 3). It then applies the FindPlan procedure
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to compute an execution plan for every path between every pair of nodes in each resulting

graph (line 6). These plans specify a set of partial functions that can soundly shorten the

solution to at least one example problem (Theorem 5.20).

Definition 5.16 (Solution Graph). A directed multigraph G = 〈N,E〉 is a solution graph

for a term t, predicate Solved, and rules R if N is a set of terms, t ∈ N ; E is a set of

labeled edges 〈src, tgt〉R such that src, tgt ∈ N , R ∈ R, and tgt ∈ fire(R, src); G is acyclic;

t is the only term in G with no incoming edges; G contains at least one sink term with no

outgoing edges; and each sink satisfies the Solved predicate.

FindPlan takes as input a path p in a solution graph and produces a general execution

plan (Definition 5.14) for replaying that path (Definition 5.17). The first loop, at lines 10–13,

creates a plan replaying the path p from n0 to nk exactly: i.e., JSKn0 = nk. The second loop,

at lines 14–17, generalizes S to be more widely applicable, while still replaying the path p.

Definition 5.17 (Replaying Paths). Let p = n0 →R1 . . . →Rk
nk be a path in a solution

graph, consisting of a sequence of k edges labeled with rules R1, . . . , Rk. An execution plan

S replays the path p if S is a sequence of k steps [〈R1, β1〉, . . . , 〈Rk, βk〉], one for each edge

in p, and there exists binding β such that apply(S, n0, β) ' nk.

Example 5.18. To illustrate, consider applying FindPlan to the path (= (+ x 1 -1) 5)

→B (= (+ 0 x) 5)→A (= x 5) in Figure 5.2a. The Solve procedure computes this path

p by firing B with idx = [1], βB = {[] 7→ [], [1] 7→ [2], [2] 7→ [3]}, and A with idx = [1],

βA = {[] 7→ [], [1] 7→ [1]]}. As a result, the loop at lines 10–13 executes twice to produce

the plan S = [〈B, idx , βB〉, 〈A, idx , βA〉]. The plan S replays p exactly: it describes a tactic

for applying the axioms B ◦ A to a term whose first child has two opposite constants as

its second and third children. The loop at lines 14–17 generalizes S to produce the plan

in Figure 5.2b. This plan replays p but applies to any term with opposite constants as its

second and third children.

Definition 5.19 (Shortcuts). A path p is a potential shortcut path in a solution graph G if p

contains more than one edge and p is a subpath of a shortest path from G’s source to one of
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1: function FindSpecs(T : set of terms, A: set of well-formed programs)
2: S ← {}
3: for all 〈N,E〉 ∈ {Solve(t,A) | t ∈ T} do
4: for all src, tgt ∈ N do
5: paths ← allPaths(src, tgt, 〈N,E〉) . All paths from src to tgt
6: S ← S ∪ {FindPlan(p) | p ∈ paths ∧ |p| > 1}
7: return S . Execution plans for T and A

8: function FindPlan(p : n0 →R1 n1 →R2 . . .→Rk
nk)

9: S ← an empty array of size k with indices starting at 1
10: for all i ∈ {1, ... , k} do
11: for all β ∈ bindings(Ri, ni−i) do
12: if JRiK(ni−1, β) = ni then
13: S[i]← 〈Ri, β〉 . Recover the binding that engendered ni
14: root ← greatestCommonPrefix({idx | 〈R, 〈idx , β〉〉 ∈ S})
15: for all i ∈ {1, ... , k} do . Drop the common prefix from all indices
16: 〈R, 〈idx , π〉〉 ← S[i]
17: S[i]← 〈R, 〈dropPrefix(idx , root), π〉〉
18: src ← dropPrefix(n0, root)
19: return 〈S, src, JSKsrc〉 . A general execution plan for replaying p

20: function Solve(t: term, R: set of well-formed programs)
21: N ← {t} . Set of terms reachable from t via the rules in R
22: E ← {} . Edges from N to N , labeled with rules from R
23: while (∀n ∈ N.¬Solved(n)) do
24: for all src ∈ {n ∈ N | ∀e ∈ E. n 6= source(e)} do
25: for all R ∈ R do . Apply all rules to src
26: for all tgt ∈ fire(R, src) do
27: N ← N ∪ {tgt}
28: E ← E ∪ {〈src, tgt〉R}
29: paths ← ⋃

t̂∈N∧Solved(t̂) allShortestPaths(t, t̂, 〈N,E〉)
30: E ← ⋃

p∈paths pathEdges(p) . Edges comprising the shortest paths
31: N ← {t} ∪ {n | ∃e ∈ E. source(e) = n ∨ target(e) = n}
32: return 〈N,E〉 . Solution graph with all shortest solutions to t

Figure 5.11: FindSpecs takes as input a set of example problems T and axioms A, and
produces a set of plans S for composing the axioms into tactics.
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its sinks. Potential shortcuts paths represent paths that could potentially be replaced with

the application of a single tactic rule.

Theorem 5.20 (Guarantees of Specification Mining). Let T be a set of terms, Solved a

predicate over terms, and A a set of rules. If every term in T can be Solved using A,

then FindSpecs(T,A) terminates and produces a set S of plan and term triples with the

following properties: (1) for every 〈S, src, tgt〉 ∈ S, S is a general execution plan using only

rules in A where JSKsrc = tgt, and (2) for every potential shortcut path p from src to tgt

in a solution graph for t ∈ T , A, and Solved, there is a triple 〈S, src, tgt〉 ∈ S such that S

replays p.

5.5.2 Rule Synthesis

RuleSy synthesizes tactics by searching for well-formed, sound programs that satisfy spec-

ifications 〈S, src, tgt〉 produced by FindSpecs. This search is a form of syntax-guided syn-

thesis [1]: it draws candidate programs from a given syntactic space, and uses an automatic

verifier to check if a chosen candidate satisfies the specification. To enable sound, com-

plete, and efficient synthesis, RuleSy needs (1) an automatic verifier for its DSL, and (2) a

method for pruning the candidate space without omitting any correct implementations. We

address both challenges by reformulating the classic syntax-guided synthesis query to ex-

ploit the structure of well-formed rule programs and specifications produced by FindSpecs.

This reformulated query, together with the algorithm for solving it, is the key technical con-

tribution of the rule synthesis stage of our system. We illustrate the challenges of classic

syntax-guided synthesis for rule programs; show how our best-implements query addresses

them; and present the FindRules algorithm for sound, complete, and efficient solving of

this query.
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Classic Synthesis for Rule Programs

In our setting, the classic synthesis query takes the form ∃R.∀t, β.JRK(t, β) ' apply(S, t, β),

where R is a well-formed program and S is an execution plan. This represents a query where

the input is the specification S and the output is the program R. Existing tools [1, 124, 133]

cannot solve this query soundly because it involves verifying candidate programs over terms

of unbounded size. But even if we weaken the soundness guarantee to functional correctness

over bounded inputs, these tools can fail to find useful rules because the classic query is

overly strict for our purposes. We illustrate why with Example 5.21.

Example 5.21. To see why the classic synthesis query is overly strict, consider the specifi-

cation 〈S, src, tgt〉 where S is [〈A, 〈[1], I〉〉, 〈A, 〈[2], I〉〉], src is (+ (+ 0 x) (+ 0 y)), tgt is

(+ x y), and A is the additive identity axiom (Figure 5.1a). The plan S specifies a general

tactic for transforming a term of the form (op (+ 0 e1) (+ 0 e2)) to the term (op e1 e2),

where op is any binary operator in our algebra DSL. Such a tactic cannot be expressed as

a well-formed program (Definition 5.8). But many useful specializations of this tactic are

expressible, e.g.:

with (+ a@(+ x@num u) b@(+ y@num v) etc):

if x = 0 and y = 0:

replace a with u and replace b with v

Since we aim to generate useful tactics for domain model optimization, an ideal synthesis

query for RuleSy would admit many such specialized yet widely applicable implementations

of S.

In addition to being overly strict, the classic synthesis query also leads to intractable

search spaces in our setting. The generic sketch for rule programs shown above defines a

space of O(2|p|∗2|c|∗2|a|) candidate programs, where |p|, |c|, and |a| are the number of control

bits used for selecting expressions (of some finite depth) from the pattern, constraint, and

action grammars. For the candidate space to include realistic rules (e.g., Figure 5.16), these
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control parameters need to be sufficiently large, leading to exponential explosion. An ideal

synthesis query for RuleSy would therefore enable the synthesizer to explore an exponen-

tially smaller subset of the generic sketch, without missing any rules that satisfy the query.

Furthermore, reasoning about arbitrary bindings (and thus arbitrary tree permuations) is

computationally expensive, and an ideal synthesis query would enable the synthesisizer to

ignore term isomorphisms and commutativity.

The Best-Implements Synthesis Query

To address the challenges of classic synthesis, we reformulate the synthesis task for RuleSy

as follows: given 〈S, src, tgt〉, find all rules R that fire on src to produce tgt, that are sound

with respect to S, and that capture a locally maximal subset of the behaviors specified by

S. We say that such rules best implement S for 〈src, tgt〉 (Definition 5.22), and we search for

them with the FindRules algorithm (Figure 5.12), which is a sound and complete synthesis

procedure for the best-implements query (Theorem 5.27).

Definition 5.22 (Best Implementation). Let S be an execution plan that replays a path

from a term src to a term tgt. A well-formed rule R with pattern p best implements S

for 〈src, tgt〉 if JRK(src, Iβ) = tgt and ∀t, β.PJpK(t, β) 6= ⊥ =⇒ JRK(t, β) ' apply(S, t, β).

That is, R maps src to tgt under the identity binding, and R matches S’s behavior (up to

isomorphism) for any term/binding on which R’s pattern matches.

The best implementation is defined with respect to a particular pattern. We want to allow

for useful specializations by weakening the pattern while maintaining maximally general rules

by enforcing—on terms where the pattern matches—that the condition and action mimic the

plan’s behavior (up to isomorphism). To ensure we do not miss any such rules, our approach

will include enumerating over all (finitely many) possible patterns for a given specification.

The best implementation is defined over all term/binding inputs, but reasoning about

isomorphic terms is computationally expensive. To make synthesis tractable, we remove

the need for such reasoning by further restricting our synthesis query to not have to reason
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about arbitrary bindings. This more limited definition of best implements (Definition 5.23)

only describes program behavior for the identity binding, restricting the query to the inputs

where the program’s semantics matches the plan’s semantics exactly. The construction of

the DSL makes such a reduction sound; Theorem 5.24 shows that any program that best

implements an execution plan under the identity binding is sound in general.

Definition 5.23 (Best Implementation under the Identity Binding). Let S be an execution

plan that replays a path from a term src to a term tgt. A well-formed rule R with pat-

tern p best implements S for 〈src, tgt〉 under the identity binding if JRK(src, Iβ) = tgt and

∀t.PJpK(t, Iβ) 6= ⊥ =⇒ JRK(t, Iβ) = JSKt. That is, R maps src to tgt under the identity

binding, and R matches S’s behavior for any term to which R’s pattern matches under the

identity binding.

Theorem 5.24 (Soundness of Best Implements). Let A be a set of axioms, 〈S, src, tgt〉 a

specification where S uses only rules in A, and R be a program in the algebra DSL that best

implements S for 〈src, tgt〉 under the identity binding. Then R is sound with respect to A.

1: function FindRules(S: plan, src, tgt: terms, k̄: ints)
2: p0 ← termToPattern(s) . Most refined pattern that matches s
3: R← ⋃

p0vp FindRule(p, S, src, tgt, k̄)
4: return R . Rules that best implement S for 〈src, tgt〉

5: function FindRule(p: pattern, S: plan, s,t: terms, k̄: ints) .JpKs∧t=JSKs
6: bind ← λτ.PJpK(τ, Iβ)
7: C ←WellFormedConstraintHole(p, k̄) . Condition sketch
8: A←WellFormedCommandHoles(p, k̄) . Action sketch
9: T← {t |MJpKt} . Symbolic representation of all terms that satisfy p
10: c← CEGIS(CJCKbind(s) ∧ (∀τ∈T CJCKbind(τ) ⇐⇒ JSKτ 6= ⊥))
11: a← CEGIS(AJAK(s, bind(s)) = t ∧ (∀τ∈T JSKτ 6= ⊥ =⇒ AJAK(τ, bind(τ)) = JSKτ))
12: return {with p: if c: do a | c 6= ⊥ ∧ a 6= ⊥}

Figure 5.12: FindRules takes as input a bound k̄ on program size and an execution plan
S that replays a path from src to tgt. Given these inputs, it synthesizes all rule programs of
size k̄ that best implement S with respect to src and tgt.
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Sound and Complete Verification.

Verifying that a program R best implements a plan S (under the identity binding) involves

checking that R produces the same output as S on all terms t to which R applies under

the identity binding. The verification task is therefore to decide the validity of the formula

∀t.PJpattern(R)K(t, Iβ) 6= ⊥ =⇒ JRK(t, Iβ) = JSKt. We do so by observing that this

formula has a small model property when R is well-formed (Definition 5.8): if the formula is

valid on a carefully constructed finite set of terms T, then it is valid on all terms (proved in

Lemma 5.34). At a high level, T consists of terms that satisfy R’s pattern in a representative

fashion. For example, T = {x} for the pattern var because all terms that satisfy var are

isomorphic up to alpha-renaming (i.e., changing variable names does not change the meaning

of a term). Encoding the set T symbolically (rather than explicitly) enables FindRules to

discharge its verification task efficiently with an off-the-shelf SMT (Satisfiability Modulo

Theories) solver [93]. Our implementation is built on top of an off-the-shelf synthesizer using

counter-example guided inductive synthesis (CEGIS) [133].

Efficient Search.

As noted in Definition 5.22, the best implementation is defined with respect to a particular

pattern. As part of synthesis, RuleSy must enumerate over all potential patterns to find all

potential rules. FindRules accelerates this process by exploiting the observation that a best

implementation of 〈S, src, tgt〉 must fire on src to produce tgt. Thus, any best-implementing

rule must have a pattern that accepts src. The RuleSy DSL’s pattern language is defined

in such a way that there are only finitely many patterns that accept s. Moreover, there

is a unique “most specific” pattern that accepts src while accepting the minimal number of

terms. We formalize this with the notion of pattern refinement in Definition 5.25. Intuitively,

a pattern p1 refines another pattern p2 if p1 is a specialization of p2 in that it matches a

subset of the terms that p2 does. The pattern language of RuleSy forms a semi-lattice

of refinement, with _ at the top. Any sound program’s pattern can be replaced with a
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more refined pattern while preserving soundness. We exploit this structure of refinement for

efficient pattern enumeration.

Specifically, if a rule accepts a term s, its pattern must be refined by the (unique) most

refined pattern p0 (line 2) that accepts s (as a consequence of Theorem 5.26). To construct

p0, we replace each value in s with the corresponding most refined matcher for that value,

and a term (o t1 ... tk) with (o termToPattern(t1) ... termToPattern(tk)). For algebra,

that means we replace variables with var and numeric literals with num. We additionally

attach a fresh variable to every part of the pattern, later removing unreferenced variables

from synthesized programs.

Since p0 refines finitely many patterns p (from Definition 5.25), we can enumerate all of

them (line 3). Once p is fixed through enumeration, FindRule can efficiently search for

a best implementation R with that pattern, by using an off-the-shelf synthesizer [133] to

perform two independent searches for R’s condition (line 10) and action (line 11). These

two searches explore an exponentially smaller candidate space than a single search for the

condition and action, without missing any correct rules (Theorem 5.27). Given a pattern p,

FindRule explores a space of size O(2|c|+2|a|), while the generic sketch contains O(2|c|∗2|a|)

candidates. As a result, FindRules is asymptotically more efficient than classic syntax-

guided synthesis, searching a space of O(2|p| ∗ (2|c| + 2|a|)) rather than O(2|p| ∗ 2|c| ∗ 2|a|)

candidates.

Definition 5.25 (Pattern Refinement). A pattern p1 refines a pattern p2 if p1 v p2, where

v is defined as follows (implicitly quantified over all patterns):

• p v p

• x@p v p

• p v _

• m1 v m2 if ∀t.matchesJm1Kt =⇒ matchesJm2Kt
(for algebra, this means num v base and var v base)
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• (o p1 ... pk) v (o q1 ... qk) if pi v qi for all i ∈ {1, ... , k}

• (o p1 ... pn) v (o q1 ... qk etc) if n ≥ k and pi v qi for all i ∈ {1, ... , k}.

Note that the pattern _ (which matches any term) refines nothing but itself and everything

refines it. From the definition of refinement we can see that any given pattern refines finitely

many other patterns.

Theorem 5.26 (Partial Ordering of Pattern Refinement). Let p1, p2 be patterns, c be a con-

dition, a be an action, andR1, R2 be the well-formed programsR1 = with p1: if c: then a

and R2 = with p2: if c: then a. If p1 refines p2 (p1 v p2), then R2 is as general as R1

and has identical behavior for applicable inputs to R1. That is, ∀t, β. JR1K(t, β) 6= ⊥ =⇒

JR1K(t, β) = JR2K(t, β).

Theorem 5.27. Let S be an execution plan where JSKsrc = tgt, and k̄ a bound on the

size of rule programs. FindRules(S, src, tgt, k̄) returns a set of rules R with the following

properties: (1) every R ∈ R best implements S for 〈src, tgt〉; (2) R includes a sound rule R

of size k̄ if one exists; and (3) for every pattern p that refines or is refined by R’s pattern, R

includes a sound rule with pattern p and size k̄ if one exists.

5.5.3 Rule Set Optimization

After synthesizing the tactics T for the examples T and axioms A, RuleSy applies discrete

optimization to find a subset of A∪T that minimizes the objective function f . We formulate

this optimization problem in a way that guarantees termination. In particular, our Optimize

algorithm (Figure 5.13) returns a set of rules R ⊆ A ∪ T that can solve each example in

T and that minimize f over all shortest-solution graphs for T and A ∪ T (Theorem 5.28).

Restricting the optimization to shortest solutions enables us to decide whether an arbitrary

rule set R ⊆ A∪T can solve an example t ∈ T without having to invoke Solve(t,R), which

may not terminate for an arbitrary term t and rule set R in our DSL.

The Optimize procedure works in three steps. First, for each example term t ∈ T ,

lines 4–5 construct a solution graph 〈N,EA ∪ET 〉 that contains shortest solutions for t and
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1: function Optimize(T : set of terms, A,T : set of rules, f : objec-
tive)

2: GA∪T ← {}
3: for t ∈ T such that ¬Solved(t) do
4: 〈N,EA〉 ← Solve(t,A) . Solve with axioms
5: ET ←

⋃
R∈T

⋃
s,t∈N{〈s, t〉 | t ∈ fire(R, s)} . Tactic edges

6: GA∪T ← GA∪T ∪ {〈N,EA ∪ ET 〉}
7: f∅ ← λR.G. if 〈∅, ∅〉 ∈ G then return ∞ else return f(R,G)
8: return min

R⊆A∪T
f∅(R, {Restrict(G,R) |G ∈ GA∪T })

9: function Restrict(〈N,E〉: solution graph, R: set of rules)
10: t← source of the graph 〈N,E〉
11: ER ← {〈src, tgt〉R ∈ E |R ∈ R} . Edges with labels in R
12: paths ← ⋃

t̂∈N∧Solved(t̂) allPaths(t, t̂, 〈N,ER〉)
13: E ← ⋃

p∈paths pathEdges(p)
14: N ← {n | ∃e ∈ E . source(e) = n ∨ target(e) = n}
15: return 〈N,E〉 . Solution graph for t and R or 〈∅, ∅〉

Figure 5.13: Optimize takes as input a set of terms T , axioms A for reducing T , tactics T
synthesized from A and T using FindRules and FindSpecs, and an objective function f .
The output is a set of rules R ⊆ A ∪ T that minimizes f .

all subsets of A∪T . Next, line 7 creates a function f∅ that takes as input a set of rules R and

a set of graphs G, and produces ∞ if G contains the empty graph (indicating that R cannot

solve some term in T ) and f(R,G) otherwise. Finally, line 8 searches for R ⊆ A ∪ T that

minimizes f over GA∪T . This search relies on the procedure Restrict(G,R) to extract from

G a solution graph for t ∈ T and R if one is included, or the empty graph otherwise. For

linear objectives f , the search can be delegated to an optimizing SMT (Satisfiability Modulo

Theories) solver [93]. For other objectives (e.g., Figure 5.1c), we use a greedy algorithm to

find a locally minimal solution (thus weakening the optimality guarantee in Theorem 5.28).

Theorem 5.28. Let T be a set of tactics synthesized by RuleSy for terms T and axioms A,

and let f be a total function from sets of rules and solution graphs to positive real numbers.

Optimize(T,A, T , f) returns a set of rules R ⊆ A ∪ T that can solve each term in T , and

for all such R′ ⊆ A ∪ T , f(R, {Solve(t,R) | t ∈ T}) ≤ f(R′, {Solve(t,R′) | t ∈ T}).
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5.5.4 Implementation

RuleSy is built on top of Rosette [133], a language for bounded verification and synthesis

based on SMT [93]. This section highlights three key details of our implementation.

Term Canonicalization. Our implementation of Solve partially canonicalizes terms so

that isomorphic terms map to the same syntactic representation and share a node in the

solution graph. This makes Solve exponentially more time and space-efficient, but slightly

complicates the implementation of FindPlan, which must de-canonicalize paths before

computing plans for them.

Plan Filtering. We implement FindSpecs to filter out plans that apply axioms to disjoint

subterms. Such plans are unlikely to yield macros that perform fewer tree edits than the

plan’s axioms, so filtering them biases the system toward producing more useful macros.

Plan Generalization. As discussed, our definition of plans (Definition 5.14) lays out

the idea of a general plan—one in which the steps have the empty index as their great-

est common prefix. This is for cases where a training example describes behavior on

a subterm; RuleSy automatically generalizes the plan so the synthesized rule applies

in many situations. In practice, there are further kinds of plan generalization that can

be done, most notably around permutations. RuleSy reorders plans according to com-

mutative operators to enable the most general possible pattern. As an example, con-

sider the following training example for combine like terms: (+ 5 (* 2 x) (* 3 x)) →

(+ 5 (* 5 x)). A naïve specification drawn from this example would lead to the pattern

(+ _ (* num _) (* num _) etc). Our implementation of specification mining instead re-

arranges this example to (+ (* 2 x) (* 3 x) 5) → (+ (* 5 x) 5), leading to synthesiz-

ing the more general pattern of (+ (* num _) (* num _) etc).
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Decomposing Actions. In addition to decomposing condition and action synthesis as de-

scribed in Section 5.5.2, our implementation also decomposes action synthesis, when possible,

into multiple synthesis queries. This optimization exploits the observation that many rules

and plans modify independent subterms of a term; e.g., algebra rules often edit each child of

an equality term without editing the root of the term. Such cases can be straightforwardly

detected by inspecting which indices are modified in an execution plan. Our synthesis im-

plementation decomposes actions into independent sub-actions (if any) and synthesizes their

commands separately. As with decomposing condition and action synthesis, this optimiza-

tion results in exponentially smaller search spaces, and was necessary to tractably synthesize

some of our results.

Finding Concise Rules. An additional desirable property for synthesized tactics—beyond

soundness, usefulness, and generality—is conciseness. In the interest of, for example, making

rules easier to apply and to teach, we want our tactics to be maximally concise. Exactly

how to express a rule in the most readable or concise way involves complex human factors,

but we can approximate this quantitatively with a measure of program size. The smaller the

program, the more concise it is.

Finding maximally small programs is a straightforward extension to the FindRule al-

gorithm from Section 5.5.2. Upon finding a sound condition and action for a tactic, we

can repeat the CEGIS procedures with the additional constraint that the program must be

strictly smaller than the one already found. Doing this iteratively, trying to find successively

smaller programs, until failure, we will be left with the smallest possible sound rule. This

basic method of superoptimization [88] can be implemented efficiently on top of our CEGIS

system using incremental SMT solving.

5.6 Generalizing Beyond Algebra

The formalisms presented thus far have been specific to solving algebraic equations over inte-

gers. However, RuleSy as presented in this chapter can apply more generally. For example,
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we can apply RuleSy to algebra over reals or other numbers. More broadly, the framework

from this chapter can apply to a wide range of domains that fall under the general category

of “finding semantic equivalences between expressions represented as abstract syntax trees.”

In this section, we revisit and generalize the formalisms and algorithms necessary to gener-

alize RuleSy, using the semantic proof domain from Chapter 4 as a concrete example of an

alternate domain.

When instantiating RuleSy for a new domain, the implementor primarily has to change

the syntax of terms and the bits of the DSL related to matching on those terms. In par-

ticular, the operators and leaf node values can change. For example, Figure 5.14 shows the

term syntax for the semantic proof domain (contrast with Figure 5.5). Values still include

variables, but constants have changed from integers to booleans.

term ::= (op {term}∗) | value
value ::= > | ⊥ | variable identifier

op ::= commutativeop | I� | I2 | ⇒ | ¬
commutativeop ::= branch | facts | ∧ | ∨ | ⇔

Figure 5.14: Syntax for terms in the semantic proof domain. The notation {form}∗ means
zero or more repetitions of the given form.

Chaning the operators and values obviously changes the available patterns and apply

constructs. The syntax of the matcher constructs must change to support the new values.

For semantic proofs, num is replaced with bool to support the change in constant values.

Likewise, both of the semantic functions matches and operator must be changed for the new

operators and matchers. Figure 5.15 shows these functions for the semantic proof domain.

In order for RuleSy to be able to synthesize and verify programs, there are some re-

strictions on these matcher constructs:

1. Matchers may match only to value terms.

2. For every value v, there must be a unique matcher m that accepts v and is not re-
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operatorJ∧K(x1, ... , xk) = ∧
i∈{1,...,k} xi

operatorJ∨K(x1, ... , xk) = ∨
i∈{1,...,k} xi

matchesJboolKt = t is a boolean literal value.
matchesJvarKt = t is a variable identifier value.
matchesJbaseKt = matchesJboolKt ∨matchesJvarKt

Figure 5.15: The semantic functions that change for the semantic proof domain.

fined (Definition 5.25) by any other pattern. That is, ∀v.∃m.∀m′.matchesJmKv =⇒

matchesJm′Kv. This ensures that pattern enumeration (Figure 5.12) works. One

straightforward way to ensure this is to have partition the value space and have one

matcher per partition.

3. For every matcher , there must be a way to verify programs over all possible terms

accepted by that matcher. This is necessary to prove the soundess of FindRule;

the parts of the proof for the algebra domain’s matchers are in Lemma 5.34. One

sufficient way to ensure this is to use finite domains (e.g., we use integers up to a fixed

maximum) or finitizable domains (e.g., variables are equivalent up to alpha-renaming

so the domain only needs to be as big as the number of variables that show up in the

pattern).

There are additional restrictions on the behaviors of operators; broadly speaking, they

must be decidable. This is the case for integer/boolean arithmetic over finite domains and

equality over any domain.

5.7 Evaluation

To evaluate RuleSy’s effectiveness at synthesizing domain models, we answer the following

four research questions:

RQ 1. Can RuleSy’s synthesis algorithm recover standard tactics from a textbook and

discover new ones?
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RQ 2. Can RuleSy’s optimization algorithm recover textbook domain models and discover

variants of those models that optimize different objectives?

RQ 3. Can RuleSy support different educational domains?

The first two questions assess the quality of RuleSy’s output by comparing the syn-

thesized tactics and domain models to a textbook [31] written by domain experts. The

third question assesses the generality of our approach. We conducted two case studies to

answer these questions, finding positive answers to each. The implementation source code

and evaluation data are available online.10

5.7.1 Case Study with Algebra (RQ 1–3)

We performed three experiments in the domain of K-12 algebra to answer RQ 1–2. Each

experiment was executed on an Intel 2nd generation i7 processor with 8 virtual threads. The

system was limited to a synthesis timeout of 20 minutes per mined specification. The details

and results are presented below.

Quality of Synthesized Rules (RQ 1). To evaluate the quality of the rules synthesized

by RuleSy, we apply the system to the examples (PT in Table 5.1a) and axioms (Table 5.1b)

from a standard algebra textbook [31], and compare system output (607 tactics) to the tactics

from the textbook. Since the book demonstrates rules on examples rather than explicitly,

determining which rules are shown involves some interpretation. For example, we interpret

the transformation 5x + 2 − 2x = 2x + 14 − 2x → 3x + 2 = 14 as demonstrating two

independent tactics, one for each side of the equation, rather than one tactic with unrelated

subparts. The second column of Table 5.2 lists all the tactics presented in the book. We find

that RuleSy recovers each of them or a close variation.

In addition to recovering textbook tactics, RuleSy finds interesting variations on rules

commonly taught in algebra class. Figure 5.16 shows an example, which isolates a vari-

10https://github.com/edbutler/algebra-rule-synthesis

https://github.com/edbutler/algebra-rule-synthesis
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ID Source Count
PT Chapter 2, Sections 1–4 of Hall et al. [31] 92

(a) Example problems.

ID Name Example
A Additive Identity x+ 0→ x
B Adding Constants 2 + 3→ 5
C Multiplicative Identity 1x→ x
D Multiplying by Zero 0(x+ 2)→ 0
E Multiplying Constants 2 ∗ 3→ 6
F Divisive Identity x

1 → x
G Canceling Fractions 2x

2y →
x
y

H Multiplying Fractions 3
(

2x
4

)
→ (2∗3)x

4
I Factoring 3x+ 4x→ (3 + 4)x
J Distribution (3 + 4)x→ 3x+ 4x
K Expanding Terms x→ 1x
L Expanding Negatives −x→ −1x
M Adding to Both Sides x+−1 = 2→ x+−1 + 1 = 2 + 1
N Dividing Both Sides 3x = 2→ 3x

3 = 2
3

O Multiplying Both Sides x
3 = 2→ 3

(
x
3

)
= 2 ∗ 3

(b) Axioms.

Table 5.1: Example problems (a) and axioms (b) for the algebra case study.
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able from a negated fraction and an addend. This rule composes 9 axioms, demonstrating

RuleSy’s ability to discover advanced tactics.

# Isolate a variable from a negated fraction and an addend :
# (= (+ (− (/ (∗x . . .) b)) c) e)→ (= (∗x . . .) (∗ b (− c e)))
def MBALNGOHG :

with (= left@(+ (- (/ num@(* var etc) den@base ))
x@num)

right @_):
if true:
do replace left with num and

replace right with (* den (- x right ))

Figure 5.16: A custom algebra tactic discovered by RuleSy (variable names were chosen by
the author for presentation).

Quality of Synthesized Domain Models (RQ 2). We next evaluate RuleSy’s ability

to recover textbook domain models along with variations that optimize different objectives.

An important part of creating domain models for educational tools (and curricula in general)

is choosing the progression—the sequence in which different concepts (i.e., rules) should be

learned. We use RuleSy and the objective function shown in Figure 5.1c to find a progres-

sion of optimal domain models for the problems (PT in Table 5.1a) and axioms (Table 5.1b)

in [31], and we compare this progression to the one in the book.

We create a progression by producing a sequence of domain models for Sections 1–4 of

Chapter 2 in [31]. Every successive model is constrained to be a superset of the previous

model(s): students keep what they learned and use it in subsequent sections. To generate a

domain model Dn for section n, we apply RuleSy’s optimizer to the exercise problems from

section n; the objective function in Figure 5.1c with α ∈ {.05, .125, .25}; and all available

rules (axioms and tactics), coupled with the constraint that D1 ∪ . . . ∪Dn−1 ⊆ Dn.

Table 5.2 shows the resulting progressions of optimal domain models for [31], along with

the rules that are introduced in the corresponding sections. For each rule presented in a
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Section Textbook Rules ODM α = 0.05 ODM α = 0.125 ODM α = 0.25
2-1 B, M, N, G, O, M, A, K, L, NG, NG, OHG, MBA NG, OHG,

BA, HG LNG, OHG, MBA
IBD, MBA

2-2 L, E LE LNG, LE E, L
2-3 J, IB, KIB, JB E, J, KIB, IB, E, K, L, J, B, IB I, K, J, B

BMBA
2-4 LEIBDA, LEIB C, BD, LEIB, M, C, BD, IBD, M, C, D, LEIB

MLEI LEIB, MLEI

Table 5.2: A textbook [31] progression and the corresponding optimal domain models found
by RuleSy, using 3 settings of α (Figure 5.1c). Row i shows the rules that the ith model
adds to the preceding models.

section, the corresponding optimal model for α = .05 contains either the rule itself or a close

variation. Increasing α leads to new domain models that emphasize rule set complexity over

solution efficiency. This result demonstrates that RuleSy can recover textbook domain

models, as well as find new models that optimize different objectives.

5.7.2 Case Study with Propositional Logic (RQ 3)

To evaluate the extensibility and generality of RuleSy, we applied it to the domain of

semantic proofs for elementary propositional logic theorems, as described in Chapter 4.

Many students have trouble learning how to construct proofs [53], so custom educational

tools could help by teaching a variety of proof strategies.

We applied this instantiation of RuleSy to the axioms (Table 4.1) and proof exercises

(3 in total) from a textbook [20]. The system synthesized 85 rules in 72 minutes. The

resulting rules includes interesting general proof rules for each of the exercises. For example,

given (p ∧ (p→ q))→ q, RuleSy mines and synthesizes the modus ponens tactic shown in

Figure 4.6. These results show RuleSy’s applicability and effectiveness extend beyond the

domain of K-12 algebra.
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5.8 Related Work

Automated Rule Learning. Automated rule learning is a well-studied problem in Ar-

tificial Intelligence and Machine Learning. RuleSy is most closely related to rule learning

approaches in discrete planning domains, such as cognitive architectures [74]. Its learning of

tactics from axioms is similar to chunking in SOAR [71], knowledge compilation in ACT [7],

and macro-learning from AI planning [69]. But unlike these systems, RuleSy can learn

rules for transforming problems represented as trees, and express objective criteria over rules

and solutions.

Inductive Logic Programming. Within educational technology, researchers have inves-

tigated automated learning of rules and domain models for intelligent tutors [67]. Previous

efforts have focused on applying inductive logic programming to learn a domain model from

a set of expert solution traces [90, 77, 78, 61, 111]. RuleSy, in contrast, uses a small set

of axioms and example problems to synthesize an exhaustive set of sound tactics, and it

searches the axioms and tactics for a model that optimizes a desired objective.

Program Synthesis. Prior educational applications of program synthesis and automated

search include problem and solution generation [49, 3], hint and feedback generation [75,

113, 131], and checking of student proofs [76]. RuleSy solves a different problem: gener-

ating condition-action rules and domain models. General approaches to programming-by-

example [104, 79] have investigated the problem of learning useful programs from a small

number of input-output examples, with no general soundness guarantees. RuleSy, in con-

trast, uses axioms to verify that the synthesized programs are sound for all inputs, relying on

examples only to bias the search toward useful programs (i.e., tactics that shorten solutions).

Term Rewrite Systems. RuleSy helps automate the construction of rule-based domain

models, which are related to term rewrite systems [38]. Our work can be seen as an approach

for learning rewrite rules, and selecting a cheapest rewrite system that terminates on a given
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finite set of terms. RuleSy terms are a special case of recursive data types, which have been

extensively studied in the context of automated reasoning [99, 128, 11]. Our rule language is

designed to support effective automated reasoning by reduction to the quantifier-free theory

of bitvectors.

5.9 Conclusion

This chapter presented an instantiation of RuleSy for rewrite rules of semantic term equiv-

alence RuleSy is based on new algorithms for mining specifications of tactic rules from

examples and axioms, synthesizing sound implementations of those specifications, and select-

ing an optimal domain model from a set of axioms and tactics. Thanks to these algorithms,

RuleSy efficiently recovers textbook tactic rules and models for K-12 algebra, discovers

new ones, and generalizes to other domains. As the need for tools to support personalized

education grows, RuleSy can help tool developers rapidly create domain models that target

individual students’ educational objectives.

Acknowledgements. This research was supported in part by NSF CCF-1651225, 1639576,

and 1546510; Oak Foundation 16-644; and Hewlett Foundation.

5.10 Appendix: Proofs of Theorems

In this section, we restate and provide proofs for all theorems stated earlier in the chapter.

Lemma 5.29. If a term t can be transformed to a Solved form t̂ by applying the rules

R, then Solve(t,R) terminates and returns a solution graph that represents all shortest

solutions to t using R.

Proof. Solve performs breadth-first exploration of the set of all terms reachable from t by

applying the rules R (lines 23–28). This ensures that a reduced term t̂ will either be reached

after the smallest number of rule applications, or the search diverges. If the search terminates,

the multigraph 〈N,E〉 contains all shortest sequences of rule applications that reduce t to
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t̂ at line 29. Lines 30–31 preserve these sequences, while eliminating all cycles from 〈N,E〉

and ensuring that the reduced terms t̂ are the sole sinks in 〈N,E〉. The graph returned at

line 32 therefore satisfies the definition of a solution graph, completing the proof.

Lemma 5.30. Given a path p in a solution graph, FindPlan produces a triple 〈S, src, tgt〉

where S is a general execution plan S that replays p and JSKsrc = tgt.

Proof. The proof consists of three parts. First, we show that J〈Ri, β〉Kni−1 = ni at line 13.

Because 〈ni−1, ni〉Ri
is an edge in a solution graph, it follows from Definition 5.16 and the

definition of fire (Figure 4.8) that (on line 11) bindings(Ri, ni−i) contains a binding β such

that JRiK(ni−1, β) = ni. That binding is assigned to S[i] at line 13. Next, by induction

on i and Definition 5.14, we conclude that JSKn0 = nk at line 14 and S replays p (Defini-

tion 5.17). Finally, observe that root holds the longest common prefix of the step indices

idx1, . . . , idxk for the steps in S. Since the loop at lines 14–17 drops root from these in-

dices and from the starting state, the plan S at line 19 is general (by Definition 5.14), and

nk = replace(n0, root, JSKref (n0, root)) so S replays p. Furthermore, from line 32, in the

returned tuple 〈S, src, tgt〉, JSKsrc = tgt.

Theorem 5.20 (Guarantees of Specification Mining). Let T be a set of terms, Solved a

predicate over terms, and A a set of rules. If every term in T can be Solved using A,

then FindSpecs(T,A) terminates and produces a set S of plan and term triples with the

following properties: (1) for every 〈S, src, tgt〉 ∈ S, S is a general execution plan using only

rules in A where JSKsrc = tgt, and (2) for every potential shortcut path p from src to tgt

in a solution graph for t ∈ T , A, and Solved, there is a triple 〈S, src, tgt〉 ∈ S such that S

replays p.

Proof. Termination follows from Lemma 5.29 and the fact that all loops in FindSpecs and

FindPlan iterate over finite structures. Correctness (1) follows from line 6 of FindSpecs,

Definition 5.14, and Lemmas 5.29 and 5.30. Completeness (2) follows from lines 3–6, Lem-

mas 5.29 and 5.30, and Definitions 5.17 and 5.19.
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Lemma 5.31. Let R be a program, t a term, δ a tree index, and 〈γ, π〉 a binding where

JRK(ref (t, δ), 〈γ, π〉) 6= ⊥. Then, replace(t, δ, JRK(ref (t, δ), 〈γ, π〉)) = JRK(t, 〈concat(δ, γ), π〉).

Proof. This follows from the semantics of patterns (Figure 5.8). Let p, c, and a be the

pattern, condition and action of R, respectively. We proceed by comparing the application

of R to ref (t, δ) and 〈γ, π〉 and of R to t and 〈concat(δ, γ), π〉 and in particular comparing

the contexts (σ1 and σ2 respectively) of those applications.

By assumption, JRK(ref (t, δ), 〈γ, π〉) 6= ⊥. It follows by the semantics of programs

that the context σ1 = PJpK(ref (t, δ), 〈γ, π〉) 6= ⊥. and further follows by definition of P

that MJpKref (ref (t, δ), γ)π is true. We know (by Definition 5.2) that ref (ref (t, δ), γ) =

ref (t, concat(δ, γ)), and thus MJpKref (t, concat(δ, γ))π is also true. Therefore, the context

σ2 = PJpK(t, 〈concat(δ, γ), π〉) 6= ⊥.

More specifically, where t′ = ref (ref (t, δ), γ), we have:

σ1 = {x 7→ 〈concat(γ, π−1(i)), ref (t′, i)〉 | 〈x, i〉 ∈ BJpK[]}

σ2 = {x 7→ 〈concat(concat(δ, γ), π−1(i)), ref (t′, i)〉 | 〈x, i〉 ∈ BJpK[]}

That is, the contexts for both applications of this pattern differ only in that the addresses of

σ2 are the addresses of σ1 with δ prepended to them. Both contexts have the same domain,

and, for every mapping x 7→ 〈i, v〉 in σ1, σ2[x] = 〈concat(δ, i), v〉.

The only place these differing addresses are used is in the semantics of remove and

replace. So we immediately know that CJcKσ1 = CJcKσ2, so both are true. Because actions

are applied in parallel to disjoint subtrees, we may assume without loss of generality that a

consists of either a single removal or single replacement.

Fist we consider the case where a = remove x. For the first application, we have

that AJaK(ref (t, δ), σ1) = remove(ref (t, δ), fst(σ1[x])), and for the second, we have that

AJaK(t, σ2) = remove(t, fst(σ2[x])) = remove(t, concat(δ, fst(σ1[x]))). By the definitions of

remove and replace, for any α, replace(t, δ, remove(ref (t, δ), α)) = remove(t, concat(δ, α)). It

follows that replace(t, δ,AJaK(ref (t, δ), σ1)) = AJaK(t, σ2).
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The other case to consider is where a = replace x with e. First, as the semantics

of expressions don’t reference the parts of the mappings that differ from each other, we

know EJeKσ1 = EJeKσ2. Then, for the first application, we have that AJaK(ref (t, δ), σ1) =

replace(ref (t, δ), fst(σ1[x]), EJeKσ1), and for the second application we have thatAJaK(t, σ2) =

replace(t, fst(σ2[x]), EJeKσ2) = replace(t, concat(δ, fst(σ1[x])), EJeKσ1). By the definition of

replace, for any α, s, replace(t, δ, replace(ref (t, δ), α, s)) = replace(t, concat(δ, α), s). It fol-

lows that replace(t, δ,AJaK(ref (t, δ), σ1)) = AJaK(t, σ2), completing both cases.

Bringing everything together, we know that, in both applications, the pattern applies and

the condition is true, so the result of the program in each application is the value of applying

the action. As we have established that replace(t, δ,AJaK(ref (t, δ), σ1)) = AJaK(t, σ2), it

immediately follows that replace(t, δ, JRK(ref (t, δ), 〈γ, π〉)) = JRK(t, 〈concat(δ, γ), π〉).

An immediate corollary is that JRK(t, 〈γ, π〉) = replace(t, γ, JRK(ref (t, γ), 〈[], π〉)).

Lemma 5.32. Let R be a program, t be a term, and π be a valid tree permutation for t

where JRK(t, 〈[], π〉) 6= ⊥. Then JRK(t, 〈[], π〉) ' JRK(tπ, Iβ).

Proof. This proof follows the same structure as Lemma 5.31, where we show that the contexts

differ only in the addresses but not the values. Let p, c, and a be the pattern, condition and

action of R, respectively.

By assumption, JRK(t, 〈[], π〉) 6= ⊥. It follows by the semantics of programs that the

context σ1 = PJpK(t, 〈[], π〉) 6= ⊥ and further follows by definition of P that MJpKtπ is true.

Thus, by the semantics of patterns, σ2 = PJpK(tπ, Iβ) 6= ⊥.

Specifically: we have:

σ1 = {x 7→ 〈π−1(i), ref (tπ, i)〉 | 〈x, i〉 ∈ BJpK[]}

σ2 = {x 7→ 〈i, ref (tπ, i)〉 | 〈x, i〉 ∈ BJpK[]}

That is, the contexts for both applications of this pattern differ only in that the addresses

of σ1 are the addresses of σ2 permuted by π−1 (or, equivalently, the addresses of σ2 are

the addresses of σ1 permuted by π). The values are the same in both contexts. Thus,
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CJcKσ1 = CJcKσ2, so both are true. As in the proof of Lemma 5.31, the only place these

differing addresses are used is in the semantics of remove and replace, and we need to show

our conclusion holds for two cases: where a is a single remove or a single replace.

Fist we consider the case where a = remove x. For the first application we have

AJaK(t, σ1) = remove(t, fst(σ1[x])), while in the second application we have AJaK(tπ, σ2) =

remove(tπ, fst(σ2[x])). Because fst(σ2[x]) = π(fst(σ1[x])), in both applications we are remov-

ing the same (up to isomorphism) subterm, and therefore AJaK(t, σ1) ' AJaK(tπ, σ2).

The other case to consider is where a = replace x with e. First, as the semantics of

expressions don’t reference the parts of the mappings that differ from each other, we know

EJeKσ1 = EJeKσ2. This case follows analogously to the case with remove, where the the

same subterm (up to isormorphism) is being replaced with an identical term, and therefore

AJaK(t, σ1) ' AJaK(tπ, σ2).

Lemma 5.33. Let s, t be terms and idx a tree index where ref (t, idx) 6= ⊥. If ref (t, idx) ' s,

then t ' replace(t, idx , s).

Proof. By assumption, exists π where s = ref (t, idx)π. Let idx = [b1, . . . , bk]. Define ex-

tended permutation φ as:

φ([a1, . . . , an]) =

 concat([a1, ... , ak], π([ak+1, ... , an])) if n ≥ k ∧ ∀i ∈ {1, ... , k}. ai = bi

[a1, . . . , an] otherwise

We can check that replace(t, idx , s)φ = t.

Theorem 5.24 (Soundness of Best Implements). Let A be a set of axioms, 〈S, src, tgt〉 a

specification where S uses only rules in A, and R be a program in the algebra DSL that best

implements S for 〈src, tgt〉 under the identity binding. Then R is sound with respect to A.

Proof. We show that the required condition for soundness holds by construction. Let s, t,

〈γ, π〉 be arbitrary such that JRK(s, 〈γ, π〉) = t 6= ⊥. First, by Lemma 5.31, we have that
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t = replace(s, γ, JRK(ref (s, γ), 〈[], π〉)). Then, by Lemma 5.32 and by Lemma 5.33, it follows

that t ' replace(s, γ, JRK(ref (s, γ)π, Iβ)).

Let S = [〈R1, 〈γ1, ρ1〉〉, . . . , 〈Rk, 〈γk, ρk〉〉] be the given execution plan. Define τ0 =

ref (s, γ)π and τk = JRK(τ0, Iβ). By assumption that R best implements S under the

identity binding, there exist terms τ1, . . . , τk−1 and permutations π1, . . . , πk such that ∀i ∈

{1, ... , k}. τi = JRiK(τi−1, 〈γi, πi〉).

Let ti = replace(s, γ, τi) for i ∈ {0, ... , k}. By construction, for all i ∈ {0, ... , k}, τi =

ref (ti, γ), and for all i ∈ {1, ... , k}, ti = replace(ti−1, γ, τi). Thus by Lemma 5.31, it follows

that ∀i ∈ {1, ... , k}. replace(ti−1, γ, JRiK(ref (ti−1, γ), 〈γi, πi〉)) = JRiK(ti−1, 〈concat(γ, γi), πi〉),

or, equivalently, ∀i ∈ {1, ... , k}. ti = JRiK(ti−1, 〈concat(γ, γi), πi〉). Therefore, we have es-

tablished an execution plan S ′ = [〈R1, 〈concat(γ, γi), πi〉〉, . . . , 〈Rk, 〈concat(γ, γk), πk〉〉] such

that JS ′Kt0 = tk. Thus, for all i ∈ {1, ... , k}, ti ∈ fire(Ri, ti−1).

Lastly, we know by Lemma 5.33 that t0 ' s, and we further know tk = replace(s, γ, τk) =

replace(s, γ, JRK(ref (s, γ)π)) ' t. Thus, by Definition 5.10, R is sound with respect to A.

Theorem 5.26 (Partial Ordering of Pattern Refinement). Let p1, p2 be patterns, c be a con-

dition, a be an action, andR1, R2 be the well-formed programsR1 = with p1: if c: then a

and R2 = with p2: if c: then a. If p1 refines p2 (p1 v p2), then R2 is as general as R1

and has identical behavior for applicable inputs to R1. That is, ∀t, β. JR1K(t, β) 6= ⊥ =⇒

JR1K(t, β) = JR2K(t, β).

Proof. The proof follows from the semantics of patterns, inducting on the cases in Defini-

tion 5.25. For any term t and binding β, we have that both MJp2K(t, β) =⇒ MJp1K(t, β)

and BJp2K[] ⊆ BJp1K[]. From this and the assumptions that R1 and R2 are well-formed and

share a condition and action, it follows that JR1K(t, β) 6= ⊥ =⇒ JR1K(t, β) = JR2K(t, β).

Lemma 5.34. Let p be a pattern, S be a transition space, and s, t be terms such that

PJpKs 6= ⊥ and t = JSKs. Also let with p: if C: do A be a sketch (a program with

holes to be filled by the synthesizer) with well-formed holes of size k̄. If this sketch includes
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a rule that best implements S for 〈s, t〉 under the identity binding, FindRule(p, S, s, t, k̄)

returns a singleton set containing such a rule; otherwise, it returns ∅.

Proof. The proof consists of two parts. First, we show that the synthesis query for the sketch

RCA = with p: if C: then A can be decomposed into two queries for the sketches C and

A. Then, we show that the CEGIS engine [133] invoked at lines 10–11 is sound and complete

for these two queries. Hence, if RCA contains a rule that best implements S for 〈s, t〉 under

the identity binding, it will be found (due to completeness); otherwise, FindRule returns

the empty set (due to soundness).

Decomposition. To find a rule in RCA that satisfies Definition 5.22 for p, S, s, and t, we

pose the following synthesis query:

∃C,A t = JRCAK(s, Iβ) ∧ ∀τ.PJpK(τ, Iβ) 6= ⊥ =⇒ JRCAK(τ, Iβ) = JSKτ (5.1)

By semantics of rule programs, JRCAK(τ, Iβ) = JSKτ is equivalent to

(if στ 6= ⊥ ∧ CJCKστ then AJAK(t, στ ) else ⊥) = JSKτ (5.2)

where στ = PJpK(τ, Iβ) = bind(τ), (from line 6). Assuming that στ 6= ⊥ (as it must in both

places of Equation 5.1 where JRCAK(τ, Iβ) = JSKτ appears), Equation 5.2 expands into the

following formulas:

(CJCKστ =⇒ JSKτ = AJAK(τ, στ )) ∧ (¬CJCKστ =⇒ JSKτ = ⊥) (5.3)

(CJCKστ =⇒ (JSKτ 6= ⊥ ∧ JSKτ = AJAK(τ, στ ))) ∧ (JSKτ 6= ⊥ =⇒ CJCKστ ) (5.4)

(CJCKστ =⇒ AJAK(τ, στ ) = JSKτ) ∧ (CJCKστ ⇐⇒ JSKτ 6= ⊥) (5.5)

(JSKτ 6= ⊥ =⇒ AJAK(τ, στ ) = JSKτ) ∧ (CJCKστ ⇐⇒ JSKτ 6= ⊥) (5.6)

After substituting (5.6) into (5.1), rewriting t = JRCAKs into JCKs ∧ t = JAKs, letting T stand
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for {t | JpKt}, and simplifying, we get

∃C,A CJCKbind(s) ∧ (∀τ∈T CJCKbind(τ) ⇐⇒ JSKτ 6= ⊥) ∧

AJAK(s, bind(s)) = t ∧ (∀τ∈T JSKτ 6= ⊥ =⇒ AJAK(τ, bind(τ)) = JSKτ)
(5.7)

Separating Equation 5.7, we get the following separately solvable conjuncts:

∃C(CJCKbind(s) ∧ (∀τ∈T CJCKbind(τ) ⇐⇒ JSKτ 6= ⊥)) ∧ (5.8)

∃A(AJAK(s, bind(s)) = t ∧ (∀τ∈T JSKτ 6= ⊥ =⇒ AJAK(τ, bind(τ)) = JSKτ)) (5.9)

These are the formulas solved at lines 10–11 of FindRule.

CEGIS. FindRule uses an off-the-shelf CEGIS engine [133] to solve the synthesis queries

at lines 10–11. This engine is sound and complete for finite (loop-free) programs and inputs.

Since rule programs are finite by definition, it remains to be shown that the input space T

can be finitized without loss of soundness or completeness. Assuming that RuleSy treats

integers as n-bit signed values, denoted by Zn, we show that T can be replaced with a finite

set T0 ⊆ T in Equations 5.8–5.9 without affecting their satisfiability.11

Case 1. p includes no _ or etc tokens. Let v be the number of var and base patterns

in p, and V be a set of v fresh uninterpreted constants. Create a term tp by and replacing

each pattern in p with with a fresh symbolic name xidx , where idx is the index of xidx

in tp. Construct T0 by letting each xidx in tp range over Zn if scope(p, idx) = num, V if

scope(p, idx) = var, and Zn ∪ V if scope(p, idx) = base. By construction, for each term

t ∈ T, there is a term t′ ∈ T0 that is isomorphic to t up to a renaming of variables. Since

rule programs can only refer to variables via references (not by name), replacing T with T0

is sound.

Case 2. p may include _ but not etc. Let c = (o i) be a complex term with an arbitrary

11This proof covers the constructors/values seen in the algebra domain: namely, variables and integer
literals. The assumption (stated in Section 5.6) that the space of values for every constructor must be
symbolically representable boils down to being able to modify this part of the proof appropriately. For
example, the case for boolean literals from the semantic proof domain is trivial since the space is finite.
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operator o from the domain and i ∈ Zn. Construct T0 as for Case 1, additionally letting

xidx in tp range over Zn ∪ V ∪ {c} if scope(p, idx) = _. This reduction is sound because a

well-formed rule treats subterms matched by _ as opaque: the rule’s constraint can only

compare them for (in)equality, and the action can only use them as atomic components for

making new terms. In particular, apply can only be used with numeric literal terms.

Case 3. p may include both _ and etc. Let k be the number of occurrences of etc in

p. Create a set Q of 2k patterns by either removing each etc from p or replacing it with _.

Construct T0 for each q ∈ Q as for Case 2, and take the union of the resulting sets to be T0

for p. This construction is sound because well-formed rules cannot reference any subterms

matched by etc. As a result, for each occurrence of etc, T0 only needs to include enough

terms to distinguish between etc matching no subterms and one subterm.

Theorem 5.27. Let S be an execution plan where JSKsrc = tgt, and k̄ a bound on the

size of rule programs. FindRules(S, src, tgt, k̄) returns a set of rules R with the following

properties: (1) every R ∈ R best implements S for 〈src, tgt〉; (2) R includes a sound rule R

of size k̄ if one exists; and (3) for every pattern p that refines or is refined by R’s pattern, R

includes a sound rule with pattern p and size k̄ if one exists.

Proof. Line 2 defines p0 to be the most refined pattern that matches s, so by Definition 5.25

and Theorem 5.26, p0 refines the pattern of every rule applicable to s. Since there are finitely

many such patterns (Definition 5.25), termination, soundness (1), and completeness (2–3)

follow from line 3, Lemma 5.34, and Theorem 5.24.

Theorem 5.28. Let T be a set of tactics synthesized by RuleSy for terms T and axioms A,

and let f be a total function from sets of rules and solution graphs to positive real numbers.

Optimize(T,A, T , f) returns a set of rules R ⊆ A ∪ T that can solve each term in T , and

for all such R′ ⊆ A ∪ T , f(R, {Solve(t,R) | t ∈ T}) ≤ f(R′, {Solve(t,R′) | t ∈ T}).

Proof. Let R be the set of all sets R ⊆ A ∪ T such that Solve(t,R) terminates for

each t ∈ T . By construction of T (Theorems 5.20 and 5.27), we can show that for ev-
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ery R ∈ R, Solve(t,R) produces a subgraph of the graph 〈N,EA∪ET 〉 defined at lines 4–5.

Hence, for each non-Solved term t ∈ T , GA∪T contains a solution graph G consisting of

Solve(t,R) for all R ∈ R. As a result, Restrict(G,R) returns Solve(t,R) if R ∈ R

and the empty graph otherwise. By line 7, f∅(R, {Restrict(G,R) |G ∈ GA∪T }) is equal

to f(R, {Solve(t,R) | t ∈ T}) for R ∈ R, and it is infinite otherwise. Consequently, the

minimization operation at line 8 selects a cheapest set R ∈ R.

5.11 Appendix: Axioms

In this section, we list all of the axioms used for both the algebra (Table 5.1b) and semantic

proof (Table 4.1) domains in the evaluation of our system. Due to the formal nature of

the problem, we need axioms for operations such as removing unary addition or flattening

nested addition. Such axioms are critical for the system to work, but not very useful to teach

explicitly.12 Therefore, as an implementation detail, we distinguish these axioms used to clean

up the representation from normal ones, called “hidden” and “normal” axioms respectively.

Tactics are labeled with respect to only the normal axioms used within them. The referenced

tables show only the normal axioms, while this appendix lists both the normal and hidden

axioms.

5.11.1 Algebra Axioms

Normal Axioms

def add - identity :

with (+ a@num _ etc):

if a = 0:

do remove a

12For example, algebra’s standard infix-operator notation used by students can’t even represent unary
addition, so many of these “cleaning rules” are necessary as a consequence of modeling equations are trees.
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def add -cfold:

with (+ a@num b@num etc):

if true:

do replace a with apply (+ a b) and remove b

def mul - identity :

with (* a@num _ etc):

if a = 1:

do remove a

def mul -zero:

with a@(* b@num etc):

if b = 0:

do replace a with 0

def mul -cfold:

with (* a@num b@num etc):

if true:

do replace a with apply (* a b) and remove b

def div - identity :

with a@(/ b (* c@num )):

if c = 1:

do replace a with b

def div -cancel:

with (/ (* a@base etc) (* b@base etc )):

if a = b:

do remove a and remove b
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def frac - combine :

with (* a (/ b@(* _ etc) _) etc):

if true:

do replace b with a :: b and remove a

def factor:

with (+ (* a@base b) c@(* d@base e) etc):

if a = d:

do replace b with (+ b e) and remove c

def distribute :

with (* a b@(+ c d) etc):

if true:

do remove a and

replace c with (* a c) and

replace d with (* a d)

def pos -1- coeff:

with a@var:

if true:

do replace a with (* 1 a)

def neg -1- coeff:

with a@(- b):

if true:

do replace a with (* -1 b)
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def inverse -add:

with (= a@(+ b etc) c):

if true:

do replace a with (+ (- b) a) and

replace c with (+ (- b) c)

def inverse -mul:

with (= a@(* b etc) c):

if b != 0:

do replace a with (/ a b) and replace c with (/ c b)

def inverse -div:

with (= a@(/ _ (* b etc)) c):

if true:

do replace a with (* b a) and replace c with (* b c)

Hidden Axioms

def clean -add -unary:

with a@(+ b):

if true:

do replace a with b

def clean -add - flatten :

with a@(+ b c@(+ _ etc )):

if true:

do replace a with b :: c
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def clean -mul -unary:

with a@(* b):

if true:

do replace a with b

def clean -mul - flatten :

with a@(* b c@(* _ etc )):

if true:

do replace a with b :: c

def clean -exp - numerator :

with (/ a _):

if true:

do replace a with (* a)

def clean -exp - denominator :

with (/ _ a):

if true:

do replace a with (* a)

def clean -div -unary:

with a@(/ b (* ) etc):

if true:

do replace a with b

def clean -neg - constant :

with a@(- b@num ):

if true:

do replace a with apply(- b)
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5.11.2 Semantic Proof Axioms

def contradiction :

with a@(facts (I� b) (I2 c) etc):

if b = c:

do replace a with (I� ⊥)::a

def branch - collapse :

with a@(branch (facts (I� b@base) etc) c):

if b = ⊥:

do replace a with c

def and -1:

with a@(facts (I� (∧ b _)) etc):

if true:

do replace a with (I� b)::a

def and -2:

with a@(facts (I2 (∧ b c)) etc):

if true:

do replace a with (branch (I2 b)::a (I2 c)::a)

def or -1:

with a@(facts (I� (∨ b c)) etc):

if true:

do replace a with (branch (I� b)::a (I� c)::a)
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def or -2:

with a@(facts (I2 (∨ b _)) etc):

if true:

do replace a with (I2 b)::a

def not -1:

with a@(facts (I� (¬ b)) etc):

if true:

do replace a with (I2 b)::a

def not -2:

with a@(facts (I2 (¬ b)) etc):

if true:

do replace a with (I� b)::a

def impl -1:

with a@(facts (I2 (⇒ b _)) etc):

if true:

do replace a with (I� b)::a

def impl -2:

with a@(facts (I2 (⇒ _ b)) etc):

if true:

do replace a with (I2 b)::a

def impl -3:

with a@(facts (I� (⇒ b c)) etc):

if true:

do replace a with (branch (I2 b)::a (I� c)::a)
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Chapter 6

LEARNING DOMAIN MODELS FOR PUZZLE GAMES

The second, broadly different, domain for which we instantiated RuleSy is the family

of logic puzzles Nonograms. This domain shares many common properies of other logic

puzzles such as Sudoku, where the goals is to use deduction to fill in parts of a board until

a solution state is reached, where the mechanics of the game specify what makes a solution

valid. While the RuleSy framework is largely the same from the previous chapter, there

are several important differences, some requiring substantial technical contributions. Most

critically, we do not have a reasonable way to mine general specifications; our specifications

will take the form of a single input/output example. Therefore, our synthesis algorithm

needs to ensure it is learning not only sound and concise rules, but general rules that do not

overfit to the training examples. As with the previous chapter, we expect portions of the

contributions to apply to other domains (in this case, other logic puzzles). Portions of the

chapter are reused from or based on prior technical publications [29].

6.1 Background

Automated game analysis is a growing research area that aims to uncover designer-relevant

information about games without human testing [97, 119, 102, 132], which can be partic-

ularly advantageous in situations where human testing is too expensive or of limited effec-

tiveness [139]. One potential use is automatically understanding game strategies: if we can

analyze the mechanics of the game and automatically deduce what the effective player strate-

gies are, we can support a range of intelligent tools for design feedback, content generation,

or difficulty estimation. For humans to use these computer-generated strategies, they need

the strategies to be both effective in the domain of interest and concisely expressed so a
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designer can understand the whole strategy in their mind.

Modeling player interaction is challenging because the game mechanics do not fully cap-

ture how human players might approach the game. This is true for all games, but especially

for logic puzzle games such as Sudoku or Nonograms. These puzzles are straightforward for

a computer to solve mechanically by reduction to SAT or brute-force search, but humans

solve them in very different ways. Rather than search, human players use a collection of

interconnected strategies that allow them to make progress without guessing. For example,

there are dozens of documented strategies for Sudoku1 [126], and puzzle designers construct

puzzles and rank their difficulty based on which of these strategies are used [127]. The strate-

gies take the form of interpretable condition-action rules that specify (1) where a move can

be made, (2) what (easy-to-check) conditions must hold to make it, and (3) how to make

the move. Human players usually solve puzzles by looking for opportunities to apply these

strategies rather than by manual deduction or search in the problem space.

Learning and applying these strategies is the core of human expertise in the game. Un-

derstanding these strategies as a designer allows one to effectively build and analyze puzzles

and progressions. While many such strategies can be uncovered through user testing and

designer introspection, they may not effectively cover the puzzle design space or be the most

useful or simple strategies. Designers can benefit from tools that, given a game’s mechanics,

can help understand its strategy space. While we would prefer finding strategies people use,

as a necessary step, we must find strategies we can easily understand and can demonstrate

are effective for the problem-solving task.

In this chapter, we investigate automatically learning human-friendly game playing strate-

gies expressed as condition-action rules. We focus on the popular puzzle game Nonograms,

also known as Picross, Hanjie, O’Ekaki, or Paint-by-Numbers. A nonogram (see Figure 6.1)

is a puzzle in which the player must fill in a grid of cells with either true (black square) or

false. Integer hints are given for each row and column that specify how many contiguous seg-

1http://www.sudokuwiki.org/Strategy_Families contains a rather extensive list.

http://www.sudokuwiki.org/Strategy_Families
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Figure 6.1: An example of a Nonograms puzzle, with the start state on the left and completed
puzzle on the right. The numbered hints describe how many contiguous blocks of cells are
filled with true. We mark cells filled with true as a black square and cells filled with false
as a red X. We use the X to distinguish from unknown cells, which are blank. We describe
the mechanics formally in Section 6.3.

ments of filled cells exist in each row or column. Solutions often form interpretable pictures,

though this is not necessary. By convention, nonograms have unique solutions and, like other

logic puzzles such as Sudoku, can be solved by deducing parts of the answer in any order.

Also like many logic puzzles, Nonograms is, for arbitrarily sized puzzles, NP-complete [134],

but typical puzzles used in commercial books and games can often be solved with a fixed set

of greedy strategies. Even for puzzles that require some tricky moves, greedy strategies can

suffice to find a large portion of the solution. It is straightforward to construct a SAT-solver

based algorithm to solve any Nonograms puzzle, but humans do not solve the puzzle this

way. They usually use a large set of greedy strategies, and the research goal of this chapter

is to automatically generate these strategies.

A key challenge in learning these strategies is interpretability: the learned strategies

need to be expressed in terms of game-specific concepts meaningful to human players, such

as, in the case of Nonograms, the numerical hints or state of the board. To address this

challenge, we developed a new domain-specific programming language (DSL) for modeling
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interpretable condition-action rules. In contrast to previous DSLs designed for modeling

games [87, 102, 110, 101, 24], which focus on encoding the rules and representations of the

game, our DSL focuses on capturing the strategies that a player can use when puzzle solving.

Thus, the constructs of the language are game-specific notions, such as hint values and the

current state of the board. In this way, we frame the problem of discovering player strategies

for Nonograms as the problem of finding programs in our DSL that represent (logically)

sound, interpretable condition-action rules. This soundness is critical and difficult to ensure:

rules should be valid moves that respect the laws of the game, and complex constraints must

hold for this to be the case. For this reason, we use a constraint solver at the core of our

learning mechanism.

Learning condition-action rules for Nonograms involves solving three core technical prob-

lems: (1) automatically discovering specifications for potential strategies, (2) finding sound

rules that implement those specifications, and (3) ensuring that the learned rules learned

are general yet concise. The RuleSy framework for Nonograms takes as input the game

mechanics, a set of small training puzzles, a DSL that expresses the concepts available for

rules, and a cost function that measures rule conciseness. Given these inputs, it learns an

optimal set of sound rules that generalize to large real-world puzzles. The system works in

three steps. First, it automatically obtains potential specifications for rules by enumerating

over all possible game states up to a small fixed size. Next, it uses an off-the-shelf program

synthesis tool [133] powered by an SMT (Satisfiability Modulo Theories) solver to find pro-

grams that encode sound rules for these specifications. Finally, it reduces the resulting large

set of rules to an optimal subset that strikes a balance between game-state coverage and

conciseness according to the given cost function. We evaluate the system by comparing its

output to documented strategies for Nonograms drawn from tutorials and guides, finding

that it fully recovers many of these control rules and covers nearly all of game states covered

by the remaining rules.

While our implementation and evaluation focuses on Nonograms, the system makes rela-

tively weak assumptions (discussed in detail) about the DSL used as input. Variations could
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be used, and we expect DSLs representing other logic puzzles could be used in the system.

And while many parts of the learning mechanism are specific to logic puzzles, we expect the

approach of using program synthesis for learning of human-interpretable strategies to apply

more broadly, especially to domains with well-structured problem solving.

Differences from the Algebra Domain

This domain differs from algebra and the other tree-rewrite rule domains in fundamental

ways that contribute to these challenges. For example, while we can construct the oracle for

sound rules (by reduction to SAT), we cannot easily create general specifications. Thus, it

is easy to get individual input/output examples of sound behavior but not to get a function

that defines a large class of sound behaviors. Our synthesis algorithm will therefore need to

ensure that the rules being synthesized are general while at the same time being concise and

sound.

Another way in which this domain differs substantially from tree-rewrite rules in that it is

not at all obvious what patterns in the DSL should look like. For trees, it was fairly natural

to have a language that pattern-matched on particular shapes of trees. All patterns were

based on these “primitive” elements of the state. The equivalent such elements in Nonogarms

are the values of the hints and values of the cells. However, when looking at examples of rules

that humans use (examples are which are listed in Section 6.11), they are defined in terms of

higher-level concepts like “blocks of cells” or “the edge of the board.” In order for rules to be

concise and for synthesis to be tractable, the DSL’s patterns should allow for such high-level

concepts to be directly expressed as primitive constructs. But this immediately creates a

challenging design problem of which patterns are worth adding. In this chapter, we present a

set chosen after much iterative design that produces good results by being expressive enough

to admit useful rules while restricted enough for synthesis and verification to be tractable.

In the following Chapter 7, we discuss in detail this design problem and how we might go

about making it easier for future DSL designers to tackle.
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6.2 Overview

This section provides a high-level overview of RuleSy for Nonograms, where we show an

example of a greedy strategy that our system can learn. Of course, one can always solve a

puzzle by some combination of brute-force search and manual deduction, but human players

prefer to use a collection of greedy strategies. Puzzles are designed with these strategies in

mind, which take the form of pattern-condition-action rules (as in the algebra domain). This

section illustrates the key steps that our system takes to synthesize such condition-action

rules.

6.2.1 Pattern-Condition-Action Rules for Nonograms

Nonograms puzzles can be solved in any order: as cells are deduced and filled in, monotonic

progress is made towards the final solution. In principle, deductions could be made using

information from the entire board. In practice, people focus on some substate of the board.

One natural class of substates are the individual rows and columns of the board, which we

call lines. Since the rules of the game are defined with respect to individual lines, they can

be considered in isolation. A solving procedure that uses only lines is to loop over all lines

of the board, applying deductions to each. This will reveal more information, allowing more

deductions to be applied to crossing lines, until the board is filled. As many puzzle books

and games can be completed by only considering one line at a time, that is the scope on

which we focus for this paper. That is, our rule programs will map lines to lines rather than

full boards to boards.

We define the mechanics formally in Section 6.3, but to summarize here: the numerical

hints of a given line describe how many and how long contiguous blocks of true-filled cells

exist in a line. For example, a line with the hint sequence [4, 3] means that, when solved, the

line must have a total of seven true-filled cells. Four of them must be adjacent to each other,

with a gap of of at least false cell to the right, followed by the other three, also adjacent to

each other.
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(a) An example of the big hint rule: for any line
with a single, sufficiently large hint, no matter
how the hint is placed, some cells in the center
will be filled.
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(b) An example of the big hint rule for multiple
hints.

Figure 6.2: The big hint rule for one (a) and many (b) hints. This is an example of the
kind of sound greedy strategy for which we aim to learn interpretable descriptions.

As an example of a greedy condition-action rule for Nonograms, we consider what we

call the big hint rule (Figure 6.2), a documented strategy for Nonograms.2 If a hint value

is sufficiently large relative to the size of the line (Figure 6.2a), then, without any further

information, we can fill in a portion of the middle of the row. The big hint rule can be

generalized to multiple hints (Figure 6.2b): if there is any overlap between the furthest left

and furthest right possible positions of a given hint in the row, we can fill in that overlap.

Our system aims to discover sound strategies of this kind, and synthesize human-readable

explanations of them that are (1) general, so they apply to a wide variety of puzzle states,

and (2) concise, so they have as simple an explanation as possible.

6.2.2 System Overview

To synthesize sound, general, and concise descriptions of Nonograms strategies, we use the

same broad framework as the algebra domain, illustrated by Figure 4.10. Our system needs

the following inputs:

1. The formal mechanics of Nonograms to determine the soundness of learned strategies.

2https://en.wikipedia.org/wiki/Nonogram#Simple_boxes

https://en.wikipedia.org/wiki/Nonogram#Simple_boxes
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2. A domain-specific language (DSL) defining the concepts and features to represent these
strategies.

3. A cost function for rules to measure their conciseness.

4. A training set of line states from which to learn rules.

5. A testing set of line states with which to select an optimal subset of rules (that maximize
state coverage).

Given these inputs, the system uses the 3-phase algorithmic pipeline to produce an op-

timal set of rules represented in the DSL: specification mining, rule synthesis, and rule set

optimization. We explain each of these phases by illustrating their operation on toy inputs.

Specification Mining

Input Training States:



3

2

Output Specification Transitions:

  

   

3 3

2 2

Figure 6.3: Example of the inputs and outputs for specification mining in our toy problem.
Given a set of states, we use the rules of Nonograms to calculate deducible transitions for
those states. Each transition serves as the specification for a potential rule.

Before synthesizing interpretable strategies, we need specifications of their input/output

behavior. Our system mines these specifications from the given training states as illustrated

in Figure 6.3. For each training state, we use the rules of Nonograms (and an SMT solver) to

calculate all cells that can be filled in, producing a maximally filled target state. The resulting

pair of line states—the training state and its filled target state—forms a sound transition in
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the state of the game. In our system, an individual transition forms the specification for a

rule. A single transition is an underspecification of a strategy since many rules may cover

that particular transition. We leave it to the rule synthesis phase to find the most general

and concise rule for each mined specification.

Rule Synthesis

The rule synthesis phase takes as input a mined transition, the DSL for rules, and the cost

function measuring rule complexity. Given these inputs, it uses standard synthesis techniques

to find a program in the DSL that both covers the mined transition and is sound with respect

to the rules of Nonograms. Figure 6.4 shows the output of the synthesis phase for the first

transition in our toy example (Figure 6.3).

def big_hint_rule :
with h = singleton(hint ):
if lowest_end_cell(h) > highest_start_cell(h):
do fill(true , highest_start_cell(h), lowest_end_cell(h))

Figure 6.4: Basic version of the big hint rule. These programs are the output of the rule
synthesis phase of the system. The with, if, and then delineate the 3 parts of a rule: the
pattern, condition, and action. These are explained in Section 6.4.

The key technical challenge that this phase must solve, beyond finding sound rules, is to

ensure the rules are general and concise. Generality is measured by the number of line states

to which the rule is applicable, and conciseness is measured by the cost function provided

by the designer. We use iterative optimization to maximize each of these. We additionally

exploit the structure of the DSL for generality, which we detail in Section 6.6.

Rule Set Optimization

The synthesis phase produces a set of programs in the DSL, one for each mined transition,

that represent the interpretable strategies we seek. Because the DSL captures human-relevant
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features of Nonograms, the concise programs are human-readable descriptions of the strate-

gies. However, this set of rules can be unmanageably large, so the rule optimization phase

prunes it to a subset of the most effective rules. In particular, given a set of rules and a set

of testing states on which to measure their quality, this phase selects a subset of the given

rules that best covers the states in the testing set. In our implementation, testing states are

drawn from solution traces to real-world puzzles. Thus, in our toy example, the big hint rule

will be selected for the optimal subset because it is widely applicable in real-world puzzles.

6.3 The Mechanics of Nonograms

In order to simplify the presentations of the DSL and the RuleSy framework, we first

separately define the state representation and mechanics of Nonograms formally. For con-

creteness, the DSL and RuleSy algorithms will be presented in detail on Nonograms. How-

ever, both the language and algorithms are defined more abstractly, and could in theory be

instantiated for other logic puzzles. We shall point out these differences between Nonograms-

specific details versus generic implementation where appropriate.

Problem states are nonograms boards (Definition 6.2), represented as a two-dimensional

grid of cells and a set of numerical hints. Cells can take on one of three values: true,

false, or empty. Initial nonograms boards start with all cells empty, and a solved board

has all cells filled with true or false in accordance with the mechanics.3 These mechanics

are defined with respect to an individual row or column of the board, which we call a line

(Definition 6.1). We call lines (and boards) solved when filled out appropriately in accordance

with the mechanics, and valid if there is some solution consistent with their current (usually

only partially filled) state (Definitions 6.6 and 6.8). Hints apply to a single line, and the

validity of a line is self-contained: the mechanics specify what counts as a solved line, and a

board is solved if and only if all lines are solved. Most sources of commercial puzzles further

3There are variants of Nonograms that use other cell values, such as various colors to allow for more
complex pictures. We restrict ourselves to the basic mechanics, though much of the framework could be
straightforwardly adapted to the variants.
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restrict boards to be valid only if there is a unique solution. The relationship between

hints and solved lines is formalized with the line segment (Definition 6.3), specifically the

true-valued line segment (Definition 6.4).

Definition 6.1 (Line State). A Nonograms line state (or just line) s is a tuple 〈H,V 〉,

where H = [h1, ... , hk], ∀i∈{1,...,k}hi ∈ N+ is an ordered sequence of hints, and V = [v1, ... , vn],

∀i∈{1,...,n}vi ∈ {empty, true, false} is an ordered sequence of cells. Hints are known positive

integers. Cells can have one of three values: either unknown (empty) or filled with either

true or false. We say hints(s) to mean H and cells(s) to mean V . We use the length of s

as shorthand for the length of cells(s).

While the hints are included in the line state for convenience, they cannot be changed by

the player; they are not “state” in traditional sense of being mutable.

Definition 6.2 (Board State). A Nonograms board state (or just board) S is a tuple 〈R, C〉

where R = [R1, ... , RM ] is an ordered sequence of lines of equal size N (the rows and

their hints), an ordered sequence [h1, ... , hN ] of sequences of positive integer hints (the col-

umn hints). We say S has width N and height M . The rows of S (written rows(S)) is

the sequence R. The columns of S (written columns(S)) is the sequence of size-M lines

[〈h1, V1〉, ... , 〈hN , VN〉] where Vi = [cells(R1)i, ... , cells(RM)i].

Definition 6.3 (Line Segment). A line segment (or just segment) is a pair of integers γ =

〈b, e〉 where 0 ≤ b < e, representing starting and ending indices for a subsequence of a line.

The value b is the 0-indexed, inclusive start index and e the 0-indexed exclusive end index.

For a given line s = 〈[h1, ... , hk], [v1, ... , vn]〉, the segment γ is valid for s iff e ≤ n. We

write s[γ] = [vb+1, ... , ve] to denote the subsequence of cells(s) specified by γ.

We say b is the start of the segment (written start(γ)), and e is the end of the segment

(written end(γ)). We define the size of the segment as size(γ) = e− b.

Definition 6.4 (Valued Line Segment). Given a line s, a segment γ, and a set ∅ ⊂ K ⊂

{empty, true, false}, we say that γ is a K-valued segment for s iff (1) all cells in s[γ] are

in K and (2) the cells immediately adjacent to the segment are not in K (meaning each end
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of the segment either abuts the edge of the line or is next to a cell of a value other than K).

That is, γ = 〈b, e〉 is K-valued for s = 〈[h1, ... , hk], [v1, ... , vn]〉 if:

∀i∈{b,...,e−1}vi ∈ K ∧ (b = 0 ∨ vb−1 /∈ K) ∧ (e = n ∨ ve /∈ K)

For example, a true-valued line segment contains only true cells, and a true/empty-valued

line segment contains cells that are either true or empty.

We write segments(s,K) to mean the sequence [γ1, ... , γm] of all valid segments of s

that are K-valued, ordered by start(γi). Note that, as a consequence of this definition,

these segments are non-overlapping and have at least a one-cell gap between them: that is,

∀i∈{1,...,m}end(γi) < start(γi+1).

b1 b2 b3

      

g1 g2

2 4

Figure 6.5: Examples of line segments. The top (b1, b2, b3) are the true-valued line segments
of this line, and the bottom (g1, g2) the true/empty-valued line segments.

Example 6.5 (Valued Line Segments). We illustrate an example of line segments in Fig-

ure 6.5. This line has 3 true-valued segments: segments(s, {true}) = [b1 = 〈0, 2〉, b2 =

〈5, 6〉, b3 = 〈7, 9〉], and 2 true/empty-valued segments: segments(s, {empty, true}) = [g1 =

〈0, 3〉, g2 = 〈5, 10〉]. There are 6 possible combinations of valued segments, but true and

true/empty are the most interesting and the ones we use as patterns in our DSL.4 True/empty

valued segments are a common concept used in rules since they represent potential places

a hint’s corresponding segment may be. True-valued segments are important since the me-

4More of them are explored in the following chapter on designing the Nonograms DSL.
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chanics of Nonograms are defined with them, as we see below.

Definition 6.6 (Solved Lines). A line s = 〈[h1, ... , hk], [v1, ... , vn]〉 is solved iff both (1) all

cells in s are filled and (2) segments(s, {true}) = [γ1, ... , γk] with ∀i∈{1,...,k}size(γi) = hi.

Definition 6.7 (Valid Lines). A line state is valid if there is at least one assignment of all

unknown cells to true or false that produce a solved line. That is, there is at least one

solution to the line state. Unless otherwise noted, we are implicitly talking about valid line

states.

Definition 6.8 (Solved Boards). A board S is solved if all lines in rows(S)∪ columns(S) are

solved.

Definition 6.9 (Valid Boards). A board is valid if there is a unique assignment to all

unknown cells in R that produce a solved board.5 A Nonograms puzzle (also called a

nonogram) is a valid board where all cells in rows(S) ∪ columns(S) are unknown.

For the remainder of this chapter, we will be focusing on line states rather than board

states. Thus, unless otherwise noted, when we say state we mean a line state.

6.4 A Domain-Specific Language for Nonograms Rules

This section presents the RuleSy domain-specific language (DSL) for rules in the nonograms

domain. As with algebra, the language is parametric in its definition of problem states, but

we present a concrete instantiation of RuleSy that we used in our evaluation.

6.4.1 Specifying Problems and Rules.

As discussed in the previous section, problem states are Nonograms boards (Definition 6.2),

but rules are applied to a sub-state of the board, namely lines (Definition 6.1). In principle,

the sub-states we choose for rule application could be anything (e.g., multiple lines, the entire

5This uniqueness assumption isn’t strictly necessary but used by the vast majority of nonograms. With it,
a deduction can always be made from any state that fills in only a single cell. RuleSy doesn’t care either
way: it only deals with specifications for sound deductions. However, even assuming RuleSy learned all
theoretically possible rules, those rules may not completely solve puzzles with non-unique solutions.
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board). In this implementation we focus on the line: lines are a natural sub-state of boards

since the mechanics of Nonograms (Definition 6.6) are defined with respect to individual

lines. Moreover, a large portion of puzzles (including all puzzles in the references used for

evaluation) can be solved entirely through rules applied to individual lines.6

Rules in the Nonograms domain map lines to lines by filling in zero or more cells of the

input line. Patterns describe various features of the state that can be matched. Conditions

describe additional constraints of the values matched by the pattern. Actions describe filling

in a particular set of cells with either true or false.

6.4.2 Patterns and Bindings in Nonograms Rules

As with algebra, we must consider how rules can apply in multiple ways to the same input

state. For example, the big hint rule (Figure 6.2) applies to an arbitrary hint, and potentially

multiple hints within the same line. We handle this in a similar way to the algebra domain,

using the concept of a binding (Definition 6.10). Thus programs will be (partial) functions

from lines and bindings to lines. The nature of bindings in this domain is closely tied to the

types of patterns available, so we treat them together.

Patterns, loosely speaking, describe various features of the line state. These include the

obvious primitive features of the state such as the hints or the cell values, but also include

higher-order features such as a valued line segments (Definition 6.4). Figure 6.9 shows the

definitions for the four pattern types we chose to use in the implementation evaluated in this

chapter: hints, cells, blocks (true-valued segments), and gaps (true/empty-valued segments).

RuleSy is designed to allow straightforward addition of new pattern types, so any range of

pattern types could be chosen. Particularly for this domain, the problem of which patterns

to include is a challenging and subjective design task. We explore this DSL design task

6Some advanced puzzles do require reasoning with more complex sub-states, such as multiple lines, lines
on the edge of a board, or crossing lines. RuleSy could, in principle, consider all such sub-states and
find rules for each in parallel. However, since the state representation is different, the DSL’s patterns and
actions would have to change to support each new sub-state. In essence, RuleSy would have to solve
unrelated problems in parallel. For simplicity of presentation, we keep to one state representation.
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explicitly in the following Chapter 7.

The common feature of our 4 pattern types is that they represent sequences: the hints

are a sequence of integers, the cells are a sequence of true/false/empty cells, and the valued

line segments are a sequence of segments. Our pattern language matches (potentially non-

deterministically) to a particular element of one of these sequences. Our DSL supports three

matching constructs: matching the element of a singleton sequence, matching an element

of a sequence at a constant index, or matching an arbitrary element of a non-empty

sequence. The meaning of these is formalized in Figure 6.10.

Bindings specify which elements of the state are bound by the various parts of the pat-

tern. We represent this using the 0-indexed location in the corresponding element sequence.

Programs in our DSL can contain multiple patterns on which to match, so therefore a binding

in our DSL is a sequence of integers corresponding to the matched index for each pattern.

Note that both singleton and constant are deterministic: only arbitrary can support

matching multiple bindings on the same line.

Definition 6.10 (Bindings). Let β = [ι1, ... , ιk] be a sequence of non-negative integers. We

say that β is a binding for a pattern p = p1 and ... and pk if (1) for all i where pi =

singleton(T), ιi = 0, and (2) for all i where pi = constant(T, j), ιi = j. Any binding is

valid for any line state.

To draw a parallelism with the algebra domain, this pattern language shares a critical

property with the algebra DSL: the patterns form a semilattice of generality, which we will

formalize with the definition of pattern refinement in Section 6.6.2. That is, any state/binding

matching a singleton(T) pattern will also match a constant(T,0) pattern, and any

state/binding matching a constant(T,k) pattern will also match a arbitrary(T) pattern.

As will become apparent in Section 6.6.2, exploiting this property is critical for efficient

synthesis in both the algebra and the Nonograms domains. Figure 6.6 shows an example of

exploiting this structure to generalize the big hint rule from Figure 6.4; the new rule uses a

more general pattern and thus is applicable to a strict superset of states.
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def big_hint_rule_general :
with h = arbitrary(hint ):
if lowest_end_cell(h) > highest_start_cell(h):
do fill(true , highest_start_cell(h), lowest_end_cell(h))

Figure 6.6: General version of the big hint rule, which uses an arbitrary pattern instead of
a singleton pattern. This rule applies in strictly more situations than the one in Figure 6.4
and is therefore more general.

6.4.3 Semantics of Patterns, Conditions, and Actions

Rule programs (Figure 6.7), denoting partial functions from lines and bindings to lines, have

semantics that instantiate of the general RuleSy semantics (Figure 4.8). In this section

we give domain-specific meaning to contexts, patterns, conditions, and actions. Figure 6.8

shows the types for the various semantic functions and the definition of those functions is

shown in Figures 6.10 and 6.9. A complete example of the semantics of rule application is

shown in Example 6.12.

Patterns

The semantic functions have a parallel meaning to the ones from the algebra DSL. The func-

tion P gives meaning to patterns as partial functions from states and bindings to contexts.

For Nonograms, patterns match on lists of state features, e.g., a pattern might match on

an arbitrary hint. Other types of patterns include matching on individual cells or sections

of same-valued cells. For a given type, patterns can match using one of the arbitrary,

constant, or singleton constructs. These correspond to matching to an arbitrary ele-

ment, an element at a fixed index, and the only element of a singleton list, respectively.

For Nonograms, a context maps a variable x of the pattern to a tuple 〈e, L〉, where e is the

matched element (e.g., some hint, some cell) and L is the entire sequence of elements of the

matched type (e.g., the sequence of all hints). The value L is required for constructs such

as maximal. The values in these sequences are specific to the pattern type, defined by the

elements function and given meaning by the method function.
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rule R ::= with P: if e: do A

patterns P ::= d {and d}∗
pattern declaration d ::= x = p
pattern expression p ::= singleton(t)

| constant(t, k)
| arbitrary(t)

pattern type t ::= hint | cell | block | gap

action A ::= fill(B, e, e)

expression e ::= (e)
| true
| e and e
| e o e
| x is unique where b
| maximal(M,x)
| minimal(M,x)
| M(x)

operator o ::= + | - | = | >= | >
method M ::= value

| index
| line_size
| lowest_end_cell
| highest_start_cell
| true?
| false?
| empty?

identifier x ::= identifier
integer k ::= integer literal
boolean B ::= true | false

Figure 6.7: Syntax for the Nonograms DSL. The notation {form}∗ means zero or more
repetitions of the given form.



157

The semantics of P are defined by the semantic functions M and B, which has meaning

similar to algebra. The function M (for “match”) gives meaning to the pattern, checking

that a subpattern matches the state. The function B (for “bind”) gives meaning to the

variables in the pattern, extracting the sequences of pattern types.

binding := Z+ sequence
context := identifier→ pattern element× (pattern element sequence)

P : pattern× state× binding→ (context ∪ {⊥})
C : condition× context→ value
A : action× state× context→ state
M : pattern expression× state× Z+ → boolean
B : pattern expression× state→ pattern element sequence

elements : pattern type× state→ pattern element sequence
method : method× pattern element→ value

Figure 6.8: Types for the Nonograms DSL’s inputs/outputs and semantic functions. A
binding β is a sequence of non-negative integers (see Definition 6.10). Pattern elements are
values specific to each pattern type (e.g., hint), given meaning by the elements function
(Figure 6.9). Values are either booleans or integers; the DSL has a simple type system that
is omitted for presentation clarity.

Conditions

The function C gives meaning to conditions and subexpressions of conditions and actions

as a function from contexts for (type-appropriate) values. Expressions include boolean and

integer arithmetic as well as pattern-specific expressions. For well-formed programs, the

top-level expression in a condition evaluates to a boolean.

Semantically equivalent conditions are sometimes expressible in qualitatively distinct

ways. Our system uses a designer-provided cost function to choose the best one. For exam-

ple, Figure 6.11 shows another program for the basic big hint rule that uses an arithmetic

condition rather than the geometric one used in Figure 6.4. Which rule is selected by our

system depends on whether the cost function assigns lower values to geometric or arithmetic

operations—a decision left to the designers using the system, enabling them to explore the



158

elementsJcellK〈H, V 〉 = (〈i, Vi〉)|V |i=1
methodJindexK〈idx , v〉 = idx
methodJtrue?K〈idx , v〉 = v = true
methodJfalse?K〈idx , v〉 = v = false
methodJempty?K〈idx , v〉 = v = empty

elementsJhintK〈H,V 〉 = (〈H,V, i〉)|H|i=1
methodJvalueK〈H,V, idx〉 = Hidx
methodJline_sizeK〈H,V, idx〉 = |V |
methodJlowest_end_cellK〈H, V, idx〉 = idx − 1 +∑idx

j=1 Hj

methodJhighest_start_cellK〈H,V, idx〉 = |V | − |H|+ idx −∑|H|j=idx Hj

elementsJblockKs = segments(s, {true})
elementsJgapKs = segments(s, {true, empty})
methodJstartKseg = start(seg)
methodJendKseg = end(seg)
methodJsizeKseg = size(seg)

Figure 6.9: Semantics for patterns in the Nonograms DSL, grouped by pattern type. New
patterns can be added by adding further cases to these semantic functions, which Chapter 7
explores in detail. Some notation is described in Section 4.2. For example, the first group
describes the cell pattern type. Cell elements are represented as pairs of an index and a
value. The elements semantic function for cells maps a line state to the sequence of these
pairs. Methods on a particular cell element include one that evaluates to the cell’s index,
and three predicates that evaluate depending on whether the cell’s value is true, false, or
empty.
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Jwith p: if c: do aK(s, β) = if σ 6= ⊥ ∧ CJcKσ then AJaK(s, σ) else ⊥
where σ = PJpK(s, β)

PJx1 = p1 and ... xn = pnK(s, β) = if β = [ι1, ... , ιn] ∧ ∀i∈{1,...,n}MJpiK(s, ιi)
then {xi 7→ 〈Lι[i]+1, L〉 | L = BJpiKs, i ∈ {1, ... , n}}
else ⊥

MJsingleton(T)K(s, ι) = ι = 0 ∧ |L| = 1 where L = elementsJT Ks
MJconstant(T, k)K(s, ι) = ι = k ∧ 0 ≤ ι < |L| where L = elementsJT Ks
MJarbitrary(T)K(s, ι) = 0 ≤ ι < |L| where L = elementsJT Ks
BJsingleton(T)Ks = elementsJT Ks
BJconstant(T, k)Ks = elementsJT Ks
BJarbitrary(T)Ks = elementsJT Ks

CJtrueKσ = true
CJfalseKσ = false
CJ b1 and b2Kσ = CJb1Kσ ∧ CJb2Kσ
CJr + eKσ = EJrKσ + EJeKσ
CJr - eKσ = EJrKσ − EJeKσ
CJr = eKσ = EJrKσ = EJeKσ
CJr > eKσ = EJrKσ > EJeKσ
CJr >= eKσ = EJrKσ ≥ EJeKσ
CJmaximal(m, x)Kσ = u = max{methodJmKv | v ∈ L}

where 〈u, L〉 = σ[x]
CJminimal(m, x)Kσ = u = min{methodJmKv | v ∈ L}

where 〈u, L〉 = σ[x]
CJx is unique where bKσ = CJbKσ ∧ ∀v∈L\u ¬CJbK(σ ∪ x 7→ v)

where 〈u, L〉 = σ[x]
CJm(x)Kσ = methodJmKu where 〈u, L〉 = σ[x]
AJfill(B,e1,e2)K(s, σ) = fill(s, CJBKσ, CJe1Kσ, CJe2Kσ)
fill(〈H,V 〉, c, s, e) = if s ≥ 0 ∧ e < |V | ∧ ∀i∈{s+1,...,e} (Vi = empty ∨ Vi = c)

then 〈H, (if s < i ≤ e then c else Vi)|V |i=1〉
else ⊥

Figure 6.10: Semantics for most of the Nonograms DSL (Figure 6.7). Semantics for the
pattern-specific elements and method functions are shown in Figure 6.9.
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ramifications of various assumptions about player behavior.

def big_hint_rule_arithmetic :
with h = singleton(hint ):
if 2 * h > line_size:
do fill(true , line_size - h, h)

Figure 6.11: Variant of the basic big hint rule (Figure 6.4) but using arithmetic constructs
instead of geometric ones. The designer-provided cost metric for rules is used to measure
their relative complexity and choose the more concise.

Actions

The function A gives meaning to actions as functions from contexts and states to states.

In this DSL, we limit actions to filling in a single contiguous chunk of cells with a single

value. Actions expressions are of the form fill(b,s,e), which says that the board state

may be modified by filling in the cells in the range [s, e) (which must both be nonnegative

integer expressions with b < e and e at most the length of the input line) with the value

b (either true or false). These limited actions are sufficient to express common line-based

strategies for Nonograms (see Section 6.7), but it would be straightforward to support more

complex actions since our algorithms are agnostic to the choice of action semantics. In any

case, limiting actions does not limit expressiveness: a set of rules with the same pattern and

condition but different actions can express any rule that fills in arbitrary cells.

Well-formed Rule Programs

The meaning of rules is defined only for well-formed programs (Definition 6.11), in which the

binding is valid for the pattern (Definition 6.10). Furthermore, the Nonograms DSL has a

simple type system and well-formed programs are well-typed. Due to the simplicity of the

type system (e.g., there are no subtypes or other complexities), we omit describing the type

system for simplicity of presentation. Every construct in the language evaluates to a fixed
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type and expects fixed types for its subexpressions; for example, conditions must evaluate to

a boolean value, and pattern-type-specific methods expect an argument of the appropriate

pattern element.7

Definition 6.11 (Well-Formed Programs). Let R = with p: if c: do fill(b, s, e) be

a program in the DSL (Figure 6.7). We say that R is well-formed if the following hold:

• The pattern p contains no duplicate variable names.

• For all references r contained in c, s, and e, that variable is defined by p.

• For all expressions in c, s, and e, the arguments are of the right kind and arity.

• The condition c must be a boolean expression, and s and e must be integer expressions.

Example 6.12 (A Complete Example Rule Application). To illustrate the semantics of

rules, we look at the general big hint rule from Figure 6.6 (which we’ll call R with pattern p,

condition c, and action a) on the input from Figure 6.2b. Our input is s = 〈[4, 3], V 〉 where

V is a 10-length sequence of empty cells. We will considering the binding β = [1] (R also

applies to s with binding [0]).

Looking first at the pattern semantics, we have that:

elementsJhintKs = [〈[4, 3], V, 0〉, 〈[4, 3], V, 1〉]

Therefore, we have:

MJarbitrary(hint)K(s, 1) = 0 ≤ 1 < |L| where L = elementsJT Ks

= 0 ≤ 1 < 2

= true

Thus, s matches p under β. Next, B of any pattern is simply elements of that pattern, so:

7Having an appropriate type system is somewhat important for efficiency; the more restrictive the type
system, the smaller the space of programs that need to be searched during synthesis. For example, in our
implementation, we distinguish various types of integers, such as “an index of a cell” or “a length of a span
of cells.” The expression start(e) has the former type while size(e) has the latter.
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BJarbitrary(hint)Ks = elementsJhintKs = [〈[4, 3], V, 1〉, 〈[4, 3], V, 2〉]

Putting the pattern together, we have:

PJpK(s, β) = PJh = arbitrary(hint)K(s, β)

= if β = [ι1] ∧MJarbitrary(hint)K(s, ι1)

then {h 7→ 〈Lι[1]+1, L〉 | L = BJarbitrary(hint)Ks}

else ⊥

= if MJarbitrary(hint)K(s, 1)

then {h 7→ 〈L2, L〉 | L = elementsJhintKs}

else ⊥

= if true

then {h 7→ 〈L2, L〉 | L = [〈[4, 3], V, 1〉, 〈[4, 3], V, 2〉]}

else ⊥

= {h 7→ 〈〈[4, 3], V, 2〉, [〈[4, 3], V, 1〉, 〈[4, 3], V, 2〉]〉}

That is, h is the only variable in the pattern and it points to the second hint element (the

one with value 3). This is represented by a pair of (elementsJhintKs)2 and elementsJhintKs

(i.e., the second element of and the entire sequence of hints, respectively). Let σ be this

context.

Looking at the common subexpressions of the condition and action we have:

CJlowest_end_cell(h)K(s, σ) = methodJlowest_end_cellK〈[4, 3], V, 2〉

= 2− 1 +∑2
j=1 [4, 3]j

= 2− 1 + 7

= 8

And for the other:

CJhighest_start_cell(h)K(s, σ) = methodJhighest_start_cellK〈[4, 3], V, 2〉

= |V | − |[4, 3]|+ 2−∑|[4,3]|
j=2 [4, 3]j

= 10− 2 + 2− 3

= 7
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Now looking at the condition, we have:

CJcK(s, σ) = CJlowest_end_cell(h) > highest_start_cell(h)K(s, σ)

= CJlowest_end_cell(h)K(s, σ) > CJhighest_start_cell(h)K(s, σ)

= 8 > 7

= true

Thus, the condition holds and the rule is applicable. Applying the action, we have:

AJaK(s, σ) = AJfill(true, highest_start_cell(h), lowest_end_cell(h))K(s, σ)

= fill(s,

CJtrueK(s, σ),

CJhighest_start_cell(h)K(s, σ),

CJlowest_end_cell(h)K(s, σ))

= fill(s, true, 7, 8)

Putting everything together, the output of applying the general big hint rule to 〈[4, 3], V 〉

with binding [1] is the line 〈[4, 3], V 〉 where the 7th (0-indexed) cell is replaced with true,

illustrated in Figure 6.12.

4 3

Figure 6.12: The output for Example 6.12.

6.4.4 Creating DSLs for other Domains

While the detailed constructs of our DSL are domain-specific, the structure is general to other

logic puzzles. Our system assumes the DSL has the basic structure of patterns, conditions,

and actions, but the rest of it can be varied. Our DSL for Nonograms is one of many plausible

DSLs with this structure, and similar DSLs could be crafted for games such as Sudoku.
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6.5 Characterizing Sound and Useful Rules

Before describing our algorithm for finding sound and useful rules, we must precisely describe

what we mean by sound and useful. In this section we formalize both of these notions,

highlighting the key challenge (not present in the algebra domain) of finding usefully general

rules. As stated previously, we focus on lines (Definition 6.1) as the context for applying

strategies, and thus that will be the context for defining soundness and usefulness. Usefulness

is primarily defined by a rule’s generality: that is, how many states on which it applies and

how many cells it fills in on those states.

While our definitions for the notions of soundness and usefulness are specific to Nono-

grams, analogous notions exists for any puzzle game (e.g., Sudoku) in which the player

monotonically makes progress towards the solution through deduction. Our problem formu-

lation assumes the domain has partially ordered (Definition 6.13) states and transitions, but

our algorithm is agnostic to the details.

Definition 6.13 (Partial Ordering of States). Given any two states s and t, s is weaker than

t (s � t) iff s and t share the same hints, the same number of cells, and, filled cells in s are

a subset of the filled cells in t. In particular, s � t if t is the result of filling zero or more

of unknown cells in s. That is, given s = 〈Hs, Vs〉 and t = 〈Ht, Vt〉, s � t iff: (1) Hs = Ht,

(2) |Vs| = |Vt|, and (3) ∀|Vs|
i=1, (Vs)i = empty ∨ (Vs)i = (Vt)i. Being strictly weaker (s ≺ t) is

being weaker and unequal.

The remaining definitions in this section are with respect to any abstract state space

where states support the notions of validity, being solved, and this weakness partial ordering.

The key definition for soundness is the line transition (Definition 6.14), a pair of states

representing a line and the line resulting from filling in zero or more empty cells.

Definition 6.14 (State Transition). Given a state space, a transition is a pair of states 〈s, t〉

where s � t. A transition is productive iff s ≺ t.
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6.5.1 Soundness of Rules

The notion of soundness is most naturally thought of in terms of relations: some abstract

relation on transitions is sound if all pairs represent valid deductions according to the me-

chanics. Rule programs are partial functions from states and bindings to states, but we can

view them as a relation of transitions by projecting over bindings.

We define the soundness of rules with respect to the formal game mechanics, and specif-

ically transitions. Transitions are valid if this deduction is sound according to the game

mechanics (Definition 6.15). We use an SMT solver to encode the game’s mechanics, which

gives us an oracle relation that (up to some finite bound) describes all valid transitions. We

can straightforwardly characterize soundness with respect to this relation (Definition 6.16).

Though we can characterize soundness for arbitrary transitions, in practice we can only ver-

ify a finite set of transitions. Therefore, we define soundness with respect to a given finite set

of states S. In our implementation, we chose a bound larger than the largest row or column

that appeared in any of the puzzles used for training or testing, as described in Section 6.7.

Definition 6.15 (Valid State Transition). A transition 〈s, t〉 is valid iff: (1) both states

are valid, and (2) the transition represents a necessary, sound deduction; that is, for any

solved state z, if s � z, then t � z. As we are only concerned with valid states and sound

deductions, unless otherwise mentioned, we are implicitly talking about valid transitions.

Definition 6.16 (Soundness of Rules). A program R is sound with respect to a set of states

S iff all pairs of states engendered by applications of R on states in S are valid transitions.

That is, for all s ∈ S, β where JP K(s, β) 6= ⊥, 〈s, JP K(s, β)〉 is a valid transition.

6.5.2 Useful Rules

For this dissertation, the usefulness of rules is primarily defined by how general they are.8

Intuitively, generality is measured by the number of situations in which a rule applies. In a

8There are other reasonable ways to define usefulness, some of which are directly counter to generality.
For instance, perhaps an educator might be looking for the more specific and concise possible strategy for
a given situation in order to help a novice that is stuck.
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logic puzzle like Nonograms, this includes not just how many states a rule can be applied

to but also how many cells are filled in. Because a rule might apply to the same state in

multiple ways (e.g., the big hint rule in Figure 6.2), we must consider each possible binding

of a rule. Thus, when comparing two rules for generality, we do so on a per-application basis:

a rule R is as general as another rule Q if, for every possible application of Q, there is a

corresponding application of R that fills in at least as many cells.

How we formalize this notion depends on the context. First we consider synthesis, de-

scribed in more detail in Section 6.6.2. As with the algebra domain, RuleSy attempts to

find the most general rule for a given specfication with respect to a fixed pattern. Thus in

this context, we are interested in finding a maximally general rule with a particular pattern.

We define generality for synthesis (Definition 6.17) only for rules with the same pattern. As

with soundness, we can (in principle) define this notion with respect to any set of states, but

in practice we can only measure generality with respect to a finite set of states.

Definition 6.17 (Generality of Rules). Given rule programs R and Q with the same pat-

tern, we say that R is as or more general than Q with respect to a state set S if, for all

s ∈ S and bindings β, R applies to all inputs Q does and fills in at least as many cells.

We say R is strictly more application-wise general than Q is there exists s ∈ S and bind-

ing β to which R applies but either Q does not or fills in fewer cells. That is, define

apply(P, s, β) = if JP K(s, β) 6= ⊥ then JP K(s, β) else s. A program R is as general as a

program Q if ∀s∈E,β apply(Q, s, β) � apply(R, s, β). The program R is strictly more general

than Q if, in addition, ∃s∈E,β apply(Q, s, β) ≺ apply(R, s, β).

Next consider the context of the domain model optimization phase. Rather than com-

paring one rule against another, RuleSy needs to compare sets of rules with each other.

Generality in this context is further defined specifically over a set of test problems. mention

wherever we detail this
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6.6 Rule Mining, Synthesis, and Optimization

This section presents the technical details of our system for synthesizing sound, general, and

concise condition-action rules for Nonograms. As with the algebra domain, the framework

has the same structure as presented in Figure 4.10. We describe our algorithms for each

stage and state their guarantees. Proofs can be found in Section 6.10.

6.6.1 Specification Mining

As with algebra, specification mining takes as input a set of examples and a domain definition,

and produces a set of specifications for tactic rules. Here, the domain definition takes the

form of the formal game mechanics described in Section 6.3. The nature of the domain,

particularly the lack of obvious general specifications, means that the specification mining

phase is relatively simpler than that for algebra, but the synthesis algorithm is substantially

more complicated. We describe the key challenge in specifying Nonograms rules and show

how we address it.

Specifying Sound and Useful Rule Behavior

As before, our output specifications must describe sound and useful rule behavior. In algebra,

we target learning tactics that were explicit combinations of axiom rules. In Nonograms, we

have no such rules to use as the basis for specifications. What we do have, as discussed in

Section 6.5.1, is an oracle that defines all valid transitions, i.e., a universal rule.

We also have some very specific rules: individual transitions. Every individual transition

defines a single maximally specific rule; it applies only to one state. Our approach will be to

use this individual input-output examples as specifications. It will be the job of the program

synthesis phase of the framework to generalize beyond this single example, finding maximally

general rules (with constraints to remain concise) that cover the specification.

As discussed in Section 6.5.1, in practice we can only verify rule behavior over a finite

space of inputs. So our specification includes this finite space, defined by the notion of a
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transition space (Definition 6.18). This space defines the range of states over which RuleSy

will guarantee soundness. In practice, as long as this space is bigger than the space of

potential puzzles, rules will be sound for all practical purposes. In our implementation, we

select the transition space to be all states up to length 7.

Definition 6.18 (Transition Space). A transition space S = 〈E, T 〉 is a pair of two sets,

where E is a non-empty set of states and T the set of all valid transitions within those states.

That is, for all 〈s, t〉 ∈ T , s ∈ E and 〈s, t〉 is a valid transition. As S is determined by the

E, we say that S is the transition space on E.

Our full specification will therefore take the form of a triple 〈S, src, tgt〉, where S is

a transition space and 〈src, tgt〉 is a valid transition. The reader may notice a parallelism

between specifications for Nonograms rules and those for algebra rules. They both are defined

by a plan and a canonical input-output example. Though the details are different, each piece

serves the same purpose in both domains. The plan defines a sound over approximation

of the rule behavior, used both for verification and finding general rules. In the case of

Nonograms, the plan is the set of all possible valid transitions, while in algebra it specified

a particular way of composing axioms. The canonical example is used both to constrain

the rule behavior, but, more importantly, to aid in efficient synthesis. As we’ll describe in

the following subsection and exactly as we did in algebra, we use this canonical example

to define a space of potential patterns to enumerate over. This is important for making

synthesis tractable.

Computing Plans

As illustrated in Figure 6.3, specification mining takes as input a set of line states (Defini-

tion 6.1) and produces a set of maximal transitions (Definition 6.14), one for each given state,

that serve as specifications for the rule synthesis phase. In particular, for every training state

s, we use an SMT solver to calculate a target state t such that 〈s, t〉 is a valid transition,

and t is stronger than any state u (i.e., u � t) for which 〈s, u〉 is a valid transition. This
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1: function FindSpecs(T : set of states, E: set of states)
2: T ← {}
3: for all src ∈ T do . enumerate all valid transitions using an SMT solver
4: T ← T ∪ {〈src, tgt〉 | 〈src, tgt〉 is a valid transition}
5: S ← {}
6: for all src ∈ T do
7: t← maximalTransition(src) . the maximal transition possible from src
8: for all tgt ∈ decomposeActions(src, t) do . break t into expressible actions
9: S ← S ∪ {〈〈E, T 〉, src, tgt〉}
10: return S
Figure 6.13: FindSpecs takes as input a training set T and a verification set E. Given
these inputs, it returns a set of transition-space/transition pairs specifying nonograms rules.

calculation is straightforward: for each unknown cell in s, we ask the SMT solver whether

that cell is necessarily true or false according to the rules of Nonograms, and fill it (or

not) accordingly. The resulting transitions, and therefore rule specifications, represent the

strongest possible deductions that a player can make for the given training states.

The effectiveness of our mining process depends critically on the choice of the training

set. If the training set is too small or haphazardly chosen, the resulting specifications are

unlikely to lead to useful rules. We want a variety of states, so enumerating states up to a

given size is a reasonable choice. But for lines of size n, there are between 2n and 4n possible

transitions, so we choose a relatively small value (in our evaluation, a random subset of lines

of size n ≤ 7), relying on the rule synthesis phase to generalize these rules so they apply on

the larger states in the testing set.

One important consideration is the mismatch between the space of possible transitions

and the space of transitions expressible by actions in the DSL. A transition 〈s, t〉 may fill

in an arbitrary set of empty cells of s with true or false or both, but the actions in our

DSL can only fill in contiguous runs of cells with a single value. Therefore, a transition

may represent multiple rules that we could learn, so we need to decompose a transition

into pieces whose actions can actually be expressed in the DSL. In order to be complete,

RuleSy would need to try all possible actions compatible with a transition. In our practical
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implementation, we greedily decompose a transition into maximally sized chunks.This may

cause us to miss some rules but shortens synthesis time substantially while still finding many

useful rules. Note that, even if the DSL had a more expressive action language, we would still

need this: any given example might represent two qualitatively distinct rules being applied

simultaneously, so if we want RuleSy to find such rules, we must try various decompositions

of the transition. example of decomposing transitions some note about how, in practice, we

don’t use all states but only those that lead to canonical transitions

Definition 6.19 (Maximal State Transition). A valid transition 〈s, t〉 is maximal iff, for all

valid transitions 〈s, u〉, u � t.

Theorem 6.20 (Specification Mining). Let T ⊆ E be sets of Nonograms line states. The

function FindSpecs(T,E) terminates and produces a set S of transition space and transition

triples with the following properties: (1) for every 〈S, src, tgt〉 ∈ S, S = 〈E, T 〉 is the

transition space for E (2) for every 〈S, src, tgt〉 ∈ S, 〈src, tgt〉 is a valid transition in T

that can be expressed by some action expression, and (3) for every maximal transition

〈src, tgt〉 where src ∈ T , there exist tuples 〈S, src, tgt1〉, . . . , 〈S, src, tgtk〉 in S such that

fillset(〈src, tgt〉) ⊆ ⋃i∈{1,...,k} fillset(〈src, tgti〉).

6.6.2 Rule Synthesis

Given specifications of the form 〈S, src, tgt〉, RuleSy synthesizes tactics by searching for

well-formed, sound programs that satisfy them. As in the algebra domain, this search is a

form of syntax-guided synthesis [1], using an automatic verifier to check if a chosen candidate

program from a given syntactic space satisfies the specification. We must solve the same

challenges as the previous domain: RuleSy needs (1) an automatic verifier for its DSL, and

(2) a method for pruning the candidate space without omitting any correct implementations.

We address both challenges by exploiting the structure of well-formed rule programs and

specifications produced by FindSpecs. In this section, we illustrate the challenges of classic

syntax-guided synthesis for rule programs, show how we address then them, and present the



171

FindRules algorithm for sound, complete, and efficient solving of this query.

Basic Synthesis for Rule Programs

In this setting, every specification 〈S, src, tgt〉 has the same transition space S. Thus, ob-

viously, the classical synthesis query where the program matches S on all inputs is overly

strict; S represents the universal rule of all possible transitions (up to a finite bound). We

want to find some rule that covers a subset of the transition space while specifically including

the transition 〈src, tgt〉. Thus, the basic synthesis query in our setting takes the following

form, where S = 〈E, T 〉:

∃R (∃β JRK(src, β) = tgt) ∧ (∀s∈E,β JRK(s, β) 6= ⊥ =⇒ 〈s, JRK(s, β)〉 ∈ T ) (6.1)

Existing off-the-shelf synthesis tools [1, 124, 133] can solve this query since the input space is

of finite size and programs are loop free (assuming we search over a finite space of programs).

However, these tools can fail to find useful rules because this query fails to specify that a rule

should be maximally general, which is the challenge RuleSy must address. For example,

a valid answer to this query is a rule that admits only the transition 〈src, tgt〉, which is

obviously not particularly useful. We describe our solution below.

The Best-Implements Synthesis Query

Our solution is to reformulate the synthesis query as we did in algebra: we would like to

find as many rules as possible that fire on src to produce tgt and capture a locally maximal

subset of behaviors, which we capture in the best-implements search query (Definition 6.22)

and search for with the FindRules algorithm (Figure 6.17). In practice, there can be many

different maximally general rules: that is, multiple rules that cover 〈src, tgt〉, are each locally

maximally general, but which cover non-overlapping subsets of the transition space. As

in the tree rewrite domain, two program R and Q can differ in this way because they have

different patterns. But, as illustrated in Example 6.21, R and Q could have the same pattern
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and both be maximally general but still have different behavior from different conditions.

Example 6.21.

As a practical implementation matter, we cannot feasibly search for every single max-

imally general rule that matches a given specification 〈S, src, tgt〉. But it is important to

explore multiple rules: to see why, consider the example illustrated in Figure 6.14. This rule

is strictly more general than the big hint rule from Figure 6.6, but is substantially more com-

plicated (i.e., less concise). Figure 6.15 illustrates an input showing that it is more general.

We want RuleSy to find rules like that in Figure 6.6 that balance generality with concise-

ness. To achieve this, RuleSy has a compromise: for a single synthesis query, RuleSy will

greedily find only one maximally general rule. However, RuleSy will run multiple queries

for each specification with various constraints on program size and behavior in order to find

rules or various levels of conciseness.9

def big_hint_rule_complex :
with h = arbitrary(hint) and

g = constant(gap , 0):
if start(g) > highest_start_cell(h) - lowest_end_cell(h):
do fill(true ,

highest_start_cell(h),
lowest_end_cell(h) + start(g))

Figure 6.14: A more general yet more complex version of the big hint rule than the one from
Figure 6.6.

For one, RuleSy will enumerate over all possible patterns. This allows RuleSy to

find both the big hint rules illustrated in Figures 6.6 and 6.14. Beyond enumerating over

patterns, RuleSy enumerates over various bounds on program shapes. This allows RuleSy

to find multiple maximally general rules within a single pattern. Thus, our best-implements

9This process can be thought of as being akin to regularlization from statistical machine learning: RuleSy
constrains parts of the program to prevent over-fitting to a particular example. By trying many different
queries, RuleSy can greedily optimize only generality while finding a variety of rules to balance generality
versus conciseness.



173

   


     

4

4

Figure 6.15: An example transition to which the basic big hint rule (Figure 6.4) does not
apply but the more complex one (Figure 6.14) does.

synthesis query will be defined with respect to both a given fixed pattern and given bound

on program size.10

Definition 6.22 (Best Implementation). Let 〈S, src, tgt〉 be a specification, p be a pattern,

and k̄ be a bound on program size. A well-formed program R with pattern p best implements

〈S, src, tgt〉 under bounds k̄ if:

1. R has size at most k̄,

2. R satisfies the basic synthesis query for 〈S, src, tgt〉 (Equation 6.1), meaning it is sound

under S and fires on src to produce tgt.

3. R is maximally general with respect to S (Definition 6.17) over all programs with

pattern p and size at most k̄.

Sound and Efficient Search

As the best implementation is defined with respect to both a particular pattern and a bound

on program size, RuleSy must enumerate over all patterns and a (user-specified) range of

potential program sizes. For patterns, we exploit the exact same trick as the algebra domain:

using pattern refinement (Definition 6.23). Any best implementation R of 〈S, src, tgt〉 must

fire on src to produce tgt, and therefore the pattern of R must refine the unique most refined

10Conveniently, restricting the pattern and program shapes makes the synthesis task substantially more
tractable by dramatically reducing the space of potential programs to search.
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pattern for src. There are finitely many such patterns and thus they can be enumerated

(Line 3 of Figure 6.17), starting with the most refined such pattern (Line 2).

Definition 6.23 (Pattern Refinement). A condition pattern p1 refines a pattern p2 if p1 v p2,

where v is defined as follows:

• p v p

• singleton(t) v constant(t, 0)

• constant(t, k) v arbitrary(t)

• p1 and ... and pn v p1 and ... pi−1 and pi+1 ... and pn for all 0 < i ≤ n

• p1 and ... and pi and ... and pn v p1 and ... and p′i and ... and pn if pi v p′i

Note that, by definition, any given pattern refines finitely many other patterns.

Example 6.24 (Pattern Refinement). To illustrate the concept of the most refined pattern

for a given state, consider the line state in Figure 6.16. The most refined pattern for this

line is:

constant(hint ,0) and constant(hint ,1) and

singleton(block) and

constant(gap ,0) and constant(gap ,1) and

constant(cell ,0) and constant(cell ,1) and

constant(cell ,2) and constant(cell ,3) and

constant(cell ,4)

In practice, useful general rules use relatively few bound elements (every variation of the

big hint rule we’ve discussed uses only one or two, for example). We can significantly improve

the performance of pattern generalization by searching for programs with fewer patterns first.

Referencing Example 6.24, rather than finding rules with all 10 pattern elements, we would

search for programs that use small subsets of them, in increasing order. Our implementation

stops after a fixed upper bound on size but in principle could enumerate over all of them.
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Figure 6.16: An example line state whose most refined pattern is described in Example 6.24.
The singleton block and constant gaps are labeled as b and g1, g2, respectively.

Theorem 6.25 (Partial Ordering of Pattern Refinement). Let p1, p2 be patterns, c be a con-

dition, a be an action, andR1, R2 be the well-formed programsR1 = with p1: if c: then a

and R2 = with p2: if c: then a. If p1 refines p2 (p1 v p2), then R2 is as general as R1

and has matching behavior for applicable inputs to R1. That is, ∀t, β. JR1K(t, β) 6= ⊥ =⇒

JR1K(t, β) = JR2K(t, β).

In order to find rules that best implement the specification (i.e., are maximally general),

FindRule uses a greedy iterative optimization. FindRule first finds any sound rule that

fires from src to tgt (Line 11). The function then attempts to find a new sound rule that

strictly more general than the previous best (Lines 12–14). Upon failure to synthesize a new

rule, the function is guaranteed to have a (locally) maximally general rule.11 As discussed,

this technique is greedy; we will find some arbitrary locally most general rule. We rely on

enumerating over many synthesis queries to find a variety of rules. We could straightforwardly

extend the system to produce more maximally general by restarting the search after hitting

a local optimum and adding constraints to cover states not covered by any of the previous

rules, but such a strategy would substantially increase synthesis time.

Theorem 6.26 (Rule Synthesis). Let 〈S, src, tgt〉 be a specification and k̄ a bound on the

size of rule programs. FindRules(S, src, tgt, k̄) returns a set of rules R with the following

properties: (1) every R ∈ R best implements S for 〈src, tgt〉 under k̄; (2) R includes a sound

11In both this domain and the algebra domain, we also use this type of loop-until-failure iteration to
find maximally concise rules. In the Nonograms domain, we first maximize generality, then minimize the
program size while preserving generality.
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1: function FindRules(S: transition space, src, tgt: states, k̄: ints, n: int)
2: p0 ← termToPattern(s) . Most refined pattern that matches s
3: R← ⋃

p0vp FindRule(p, S, src, tgt, k̄, n)
4: return R . Rules that best implement S for 〈src, tgt〉

5: function FindRule(p: pattern, 〈E, T 〉: transition space, s, t: states, k̄: ints, n: int)
6: C ←WellFormedConditionHole(p, k̄) . Condition sketch
7: A←WellFormedActionHole(p, k̄) . Action sketch
8: R← with p: if C: do A
9: S← {σ |MJpKσ ∧ σ ∈ E} . Symbolic representation of states satisfying p
10: best← ⊥
11: p← CEGIS(Sound(R, T ,S) ∧Matches(R, src, tgt))
12: while p 6= ⊥ do . greedily generalize rule until failure
13: best← p
14: p← CEGIS(Sound(R, T ,S) ∧Matches(R, src, tgt) ∧MoreGeneral(R, best,S))
15: return {best | best 6= ⊥}

16: function Sound(R: program, T : transition set, S: symbolic state set)
17: return ∀σ∈S,β JRK(σ, β) 6= ⊥ =⇒ 〈σ, JRK(σ, β)〉 ∈ T

18: function Matches(R: program, src, tgt: states)
19: return ∃β. JRK(src, β) = tgt

20: function MoreGeneral(R: program, Q: program, S: symbolic state set)
21: apply← λ(P, s, β). if JP K(s, β) 6= ⊥ then JP K(s, β) else s
22: return (∀s∈S,β apply(Q, s, β) � apply(R, s, β)) ∧ (∃s∈S,β apply(Q, s, β) ≺ apply(R, s, β))

Figure 6.17: FindRules takes as input a specification 〈S, src, tgt〉 and a bound k̄ on program
size. Given these inputs, it returns a set of rules best implementing S for 〈src, tgt〉 under k̄.
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rule R of size at most k̄ if one exists; and (3) for every pattern p that refines or is refined by

R’s pattern, R includes a sound rule with pattern p and size k̄ if one exists.

6.6.3 Rule Set Optimization

After synthesizing a set of rules R from the training examples E, RuleSy applies discrete

optimization to find a subset of R that minimizes a given objective function f , defined over

a set of testing examples F . As with algebra, the example objective function we consider is

one that evaluates a set of rules based on the balance of conciseness and how well the rules

can be used to solve problems. The primary challenge in this phase is characterizing what

it means for a set of rules to be useful to solve problems, and solving this challenge is our

primary contribution in the phase.

Basic Rule Set Optimization Algorithm

Given a set of rule programs R and a testing set of examples F , the rule set optimization

algorithm selects a subset of R that is the most general over F (as per Definition 6.17).

For F , our evaluation uses a set of states drawn from solution traces of real-world puzzles.

To choose a subset of rules with the best coverage of the testing set, we set up a discrete

optimization problem with the following objective: select k rules (for some fixed k) that cover

the greatest proportion of (maximal) transitions from the testing set. For this optimization,

we measure coverage by the total number of cells filled. That is, the coverage of a test item

can be partial; the objective function awards a score for each cell filled. Greedy methods

suffice for this optimization.

Using an oracle for decomposition.

The natural way to characterize generality on the testing set is the same way we do during

synthesis: treat each example in F as a potential input to each rule in R and measure how

many cells are filled in. However, evaluating rules in this way is not reflective on how people
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use rules to solve problems: human players use the entire set of rules to make progress on

particular lines. Thus, we measure the generality of a set of rules R by applying all rules to

fixed point on each state in F .

When human players apply greedy strategies, they do so by considering both states, such

as lines, and substates, such as parts of a line. If a player can deduce that certain hints must

be constrained to certain cell ranges (as illustrated in Figure 6.18), then the player can focus

on the identified substate (essentially, a smaller line), which might make new rules available,

or at least make case-based-reasoning simpler. This form of problem decomposition is often

required for applying strategies, especially on very large boards. We do not model this

strategy in our system, but want to account for it when evaluating rules.12

    

 

1 1 3 2

1 1 2

Figure 6.18: An example of state decomposition. Because hints are ordered, if we know
where one hint lies (in this case, hint 3), then we can consider sub-lines in isolation. This
allows us to apply the big hint rule (Figure 6.4) to the right sub-line.

In order to account for this player behavior when evaluating our objective function, we use

an SMT solver as an oracle for decomposition.13 That is, to measure how much of a transition

can be solved with a given set of rules, we apply both the rules and the decomposition oracle

to a fixed point. This allows us to measure the impact of the rules in a more realistic way than

12However, future work could create a new DSL to decide when it’s safe to decompose and use RuleSy
to learn rules for it!
13 The Picross series of videogames for the Nintendo DS, 3DS, and Switch actually provide a limited
version of this oracle to the player. For each partially-filled line, the game tells the player which (if any)
of the hints are satisfied. The reasoning is based only on the partial state, not the solution; it uses some
deductive/search-based procedure.
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under the assumption that greedy strategies are used on their own, without decomposition.

6.7 Evaluation

To evaluate our system, we compared its output to a set of documented strategies from

Nonograms guides and tutorials. Unlike Sudoku, there is no comprehensive database of

strategies for Nonograms, so we recovered these control rules from various sources: the

introduction to a puzzle book [92], the tutorial of a commercial digital game [64], and the

Wikipedia entry for Nonograms.14 These sources demonstrate rules through examples and

natural language, so, to encode them in our DSL, some amount of interpretation is necessary.

In particular, while these sources often explain the reasoning behind a strategy, the strategy

is demonstrated on a simple case, letting the reader infer the general version. We encoded

the most general (when possible, multiple) variants of the demonstrated rules in our DSL,

for a total of 14 control rules. The implementation source code and evaluation data are

available online.15

We evaluated our system by asking the following questions:

1. Can the system recover known strategies by learning rules in the control set?

2. How does the learned set compare to the control set when measuring coverage of the

testing data?

Training Data. For this evaluation, we trained the system using a random subset of

maximal transitions of lines up to length 7. There were 295 such states. Note that, excepting

tutorial puzzles, no commercial puzzles are on boards this small, so none of the testing

examples are this small.

14https://en.wikipedia.org/wiki/Nonogram#Solution_techniques
15https://github.com/edbutler/nonograms-rule-synthesis

https://en.wikipedia.org/wiki/Nonogram#Solution_techniques
https://github.com/edbutler/nonograms-rule-synthesis
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Testing Data. Our testing data is drawn from commercial Nonograms puzzle books and

digital games Original O’Ekaki [98], The Essential Book of Hanjie and How to Solve It [92],

and the Pircoss e series [63, 65, 64]. We randomly selected 17 puzzles from these sources.

The lines range in size from 10 to 30. All puzzles are solvable by considering one line at a

time. To get test data from these boards, we created solution traces with random rollouts

by selecting lines, using our oracle to fill the maximum possible cells, and repeating until

the puzzle was solved. We took each intermediate state from these solution traces as testing

states. This resulted in 2805 testing states.

Learned Rules. From our training examples, the first two phases of the system (specifi-

cation mining and rule synthesis) learned 1394 semantically distinct rules as determined by

behavior on the test set. Two learned rules are shown in Figures 6.19 and 6.20. We measure

the quality of the learned rules by comparing them to the control rule set, both on whether

the learned set includes the control rules and how well the learned rules perform on the

testing data.

6.7.1 Can the system automatically recover the control rules?

Our system recovered 9 of the 14 control rules, either exactly, or as a more general rule.

Figure 6.19 shows an example of a rule from the control set for which our system learned

a syntactically identical rule. While the training set included example states for all control

rules, our greedy generalization algorithm choose a different generalization than the one

represented by the missed control rules. As discussed in Section 6.6.2, we could extend the

system to explore multiple generalizations. Given sufficient training time, such a system

would find these particular rules as well. In some cases where our system did not match a

control rule, it did find a qualitatively similar rule that covered many of the same states (as

in Figure 6.20).
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# crossing out the cell next to a satisfied hint ,
# which can be determined because it ’s (one of)
# the biggest hints.
def punctuate_maximum :

# for any arbitrary hint and block
with h = arbitrary (hint) and

b = arbitrary ( block ):
# if the hint is maximal ,
# the block and hint have the same size ,
# and the block is strictly right of the left edge ,
if maximal (h) and size(b) = size(h) and start (b) > 0:
# then cross out the cell to the left of the block
do fill(false , start (b) - 1, start (b))

Figure 6.19: An example of a control rule that our system recovers exactly, annotated with
comments. This is a top-10 rule as determined by the rule set optimization.

6.7.2 How does an optimal subset of rules compare on coverage?

In order to quantitatively compare the coverage of our learned set to the control set, we

measured the proportion of the maximal transitions of the testing examples that each rule

set covered. As described in Section 6.6.3, we measure this by the proportion of transitions

covered; for a set of rules R, the coverage C(R) is the total number of cells over all testing

examples covered by applying rules in R and the decomposition oracle to a fixed point.

Coverage of learned rules First, we compared the entire rule sets. On our test examples,

the 14 control rulesR0 have a coverage C(R0) of 4652. Our trained rule setRt has a coverage

C(Rt) of 7558. These sets are incomparable; the control rules cover some items that the

learned do not and vice-versa. Looking at the union of the two sets, they have a total coverage

C(Rt∪R0) of 7673. That is, the learned set alone covers over 98% of the transitions covered

by the learned and control sets together. This means that, even though we do not recover

the control rules exactly, the learned rules cover nearly all test cases covered by the missed

control rules.

16https://en.wikipedia.org/wiki/Nonogram#Mercury

https://en.wikipedia.org/wiki/Nonogram#Mercury
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# crossing out the left side of the line if a block
# is more than hint -value distance from the edge.
def mercury_variant :

# for singleton hint and arbitrary block
with h = singleton (hint) and

b = arbitrary ( block ):
# if the right side of the block is
# greater than the value of the hint
if start (b) + size(b) > size(h):
# then cross out cells from 0 up through the
# one that is hint -value many cells away from
# the right edge of the block.
do fill(false , 0, start (b) + size(b) - size(h))

Figure 6.20: An example top-10 rule learned by our system that is not in the control set,
annotated with comments. This rule is similar to what we call the mercury control rule,
which is not recovered exactly. But the learned rule covers a large portion of the same states.
While slightly less general, it is significantly more concise than the control rule, using one
fewer pattern, one fewer condition, and less complex arithmetic. The learned rule is also a
reasonable interpretation of the description on which the control rule is based.16

Coverage of a limited set of rules We would expect that the very small control set would

have less coverage than the large set of learned rules. For a more equitable comparison, we

measure the top-10 rules from each set, using the rule set optimization phase of our system.

Choosing the top 10 rules, the top 10 control rules have a coverage of 4652 (unchanged from

the full 14), and the top 10 learned rules have a coverage of 6039. The learned rules, when

limited to the same number as the control rules, still outperform the control on the testing

examples. Figure 6.20 shows an example of a learned rule in the top-10 set that was not in

the control set. Comparing the complexity of these rules with the cost function, the top-10

control rules have a mean cost of 31.7 while the top-10 from the learned set have a mean

cost of 33.7. Though our learning algorithm minimizes individual rule cost, the optimization

greedily maximizes coverage while ignoring cost.

These results suggest that our system can both recover rules for known strategies and

cover more states from real-world puzzles.
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6.8 Related Work

Automated Game Analysis Automated game analysis is a growing research area that

aims to uncover designer-relevant information about games without human testing [97, 119,

102, 132], which is needed in situations where human testing is too expensive or of limited

effectiveness [139]. Researchers have investigated estimating game balance [60, 139] and using

constraint solving to ensure design constraints are satisfied [118]. These approaches typically

reason at the level of game mechanics or available player actions. We contend that for many

domains, such as logic puzzles, the mechanics do not capture the domain-specific features

players use in their strategies, necessitating representations that contain such features.

General Game AI [103] is a related area in automatically understanding game strategies.

However, it tackles the problem of getting a computer to play a game while we tackle the

different problem of finding human-interpretable strategies for playing a game.

Prior research has also looked at analyzing the difficulty of logic puzzles. Browne presents

an algorithm called deductive search designed to emulate the limits and process of human

solvers [23]. Batenburg and Kosters estimate difficulty of Nonograms by counting the number

of steps that can be solved one row/column at a time [13]. This line of work relies on general

difficulty metrics, while our work models the solving process with detailed features captured

by our DSL for rules.

Interpretable Learning Finding interpretable models has become a broader topic of

research because there are many domains where it is important, such as policy decisions.

Researchers have looked at making, e.g., machine learning models more explainable [72, 112].

Many of these techniques focus on either (1) learning an accurate model and then trying to

find an interpretable approximation (e.g., [57]), or (2) restricting the space of models to only

those that are interpretable. We take the latter approach, targeting a domain not addressed

by other work with a unique approach of program synthesis.
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Modeling Games with Programming Languages Game description languages are a

class of formal representations of games, many of which were proposed and designed to sup-

port automated analysis. Examples include languages for turn-based competitive games [86]

and adversarial board games [101, 24]. Osborn et al. [102] proposed the use of such a lan-

guage for computational critics. The Video Game Description Language (VGDL) [110] was

developed to support general game playing. Operational logics [89] deal with how humans

understand the game, and Ceptre [87] is a language motivated by gameplay. We share goals

here, but are arguing to build a new DSL for each game. All of these prior languages model

the rules or representation of the game, while our language models concepts meaningful to

players in order to capture strategies at a fine-grained level, which necessitates the inclusion

of domain-specific constructs.

Program Synthesis Program synthesis, the task of automatically finding programs that

implement given specifications [48], is well-studied and has been used for a variety of applica-

tions. Notably, program synthesis has been used for several applications in problem-solving

domains, from solution generation [51] to problem generation [3] to feedback generation [113].

One challenging feature of our program synthesis problem is its underspecification. Some

methods address this challenge with an interactive loop with the user to refine specifica-

tions [48], while others rank possible programs and select a single best one [104]. Our method

ranks programs using the metrics of generality and conciseness, and differs from prior work

in that we are choosing a set of programs that best implement a set of specifications, rather

than a single program for a single specification.

6.9 Conclusion

This chapter presented an instantiation of RuleSy for the puzzle game Nonograms. Our

system takes as input the rules of Nonograms, a domain-specific language (DSL) for ex-

pressing strategies, a set of training examples, and a cost function for measuring rule com-

plexity. Given these inputs, it learns general, concise programs in the DSL that represent
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effective strategies for making deductions on Nonograms puzzles. The DSL defines the

domain-specific constructs and features of Nonograms, ensuring that our learned strategies

are human-interpretable. Since the DSL is taken as input, the designer can use it to encode

domain-specific considerations and bias. When compared with documented strategies recov-

ered from guides and tutorials, the rules our system learns recover many existing strategies

exactly and outperform them when measured by coverage on states from real-world puzzles.

This work focused on automatic synthesis of human-interpretable strategies. But the

eventual goal is to find strategies that humans are likely to use. Avenues of future work thus

include using player solution traces for cost estimation. For example, rather than using a

designer-provided cost function to estimate rule complexity, we can attempt to learn a cost

function from play traces.

Our work enables a range of applications, such as game-design feedback, difficulty estima-

tion, and puzzle and progression generation. For example, previous puzzle game generation

research relied on a designer-authored space of concepts and solution features to generate a

progression of puzzles [25]. Tools like the one presented in this paper can serve as input for

such systems.

While we applied our system to Nonograms, we expect it to be applicable to other puzzle

games as well. The system assumes that the input DSL has the basic structure of patterns,

conditions, and actions, but is agnostic to the detailed constructs. The presented system is

designed for logic puzzles of this structure, but we believe that program synthesis can be

used to learn human-interpretable strategies in a wider range of games and problem-solving

domains.

Acknowledgements. This research was supported in part by NSF CCF-1651225, 1639576,

and 1546510; and Oak Foundation 16-644.

6.10 Appendix: Proofs of Theorems

In this section, we restate and provide proofs for all theorems stated earlier in the chapter.
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Theorem 6.20 (Specification Mining). Let T ⊆ E be sets of Nonograms line states. The

function FindSpecs(T,E) terminates and produces a set S of transition space and transition

triples with the following properties: (1) for every 〈S, src, tgt〉 ∈ S, S = 〈E, T 〉 is the

transition space for E (2) for every 〈S, src, tgt〉 ∈ S, 〈src, tgt〉 is a valid transition in T

that can be expressed by some action expression, and (3) for every maximal transition

〈src, tgt〉 where src ∈ T , there exist tuples 〈S, src, tgt1〉, . . . , 〈S, src, tgtk〉 in S such that

fillset(〈src, tgt〉) ⊆ ⋃i∈{1,...,k} fillset(〈src, tgti〉).

Proof. Termination follows from the fact that all loops in FindSpecs iterate over finite

structures. Corectness (1) follows from lines 3–4, line 9, and Definition 6.18 and further (2)

follows from the assumption that T ⊆ E, lines 6–9, and the fact that decomposing a valid

transition results in valid transitions. Completeness (3) follows from line 8.

Theorem 6.25 (Partial Ordering of Pattern Refinement). Let p1, p2 be patterns, c be a con-

dition, a be an action, andR1, R2 be the well-formed programsR1 = with p1: if c: then a

and R2 = with p2: if c: then a. If p1 refines p2 (p1 v p2), then R2 is as general as R1

and has matching behavior for applicable inputs to R1. That is, ∀t, β. JR1K(t, β) 6= ⊥ =⇒

JR1K(t, β) = JR2K(t, β).

Proof. The proof follows from the semantics of patterns, inducting on the cases in Defini-

tion 6.23. For any term t and binding β, we have that bothMJp2K(t, β) =⇒ MJp1K(t, β) and

BJp2K(t, β) = BJp1K(t, β) (or, in the case where p1 = a1 and ... am and p2 = b1 and ... bn,

∀i∈{1,...,n}MJbiK(t, β) =⇒ ∀i∈{1,...,m}MJaiK(t, β) and the resulting context for p2 is a subset

or that for p1). From this and the assumptions that R1 and R2 are well-formed and share a

condition and action, it follows that JR1K(t, β) 6= ⊥ =⇒ JR1K(t, β) = JR2K(t, β).

Lemma 6.27. Let p be a pattern, S be a transition space, and 〈s, t〉 be a valid transition

such that PJpKs 6= ⊥. Also let with p: if C: do A be a sketch with well-formed

holes of size k̄. If this sketch includes a rule that best implements S for 〈s, t〉 under k̄,

FindRule(p, S, s, t, k̄) returns a singleton set containing such a rule; otherwise, it returns ∅.
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Proof. The proof consists of two parts. First, we show that the synthesis queries satisfy the

definition of best implementation. Then, we show that the CEGIS engine [133] is sound and

complete for these queries.

Best Implementation. We first show the queries guarantee the rule returned (if any) best

implements S for 〈src, tgt〉 under k̄, if any such rule exists. Looking at the queries used in

FindRule, the sketch created on lines 6–8 is up to bound k̄ (criteria (1) for Definition 6.22).

The functions Sound and Matches used in both queries (lines 11 and 14) ensures any

rule assigned to p and thus returned matches criteria (2); furthermore, because the query on

line 11 is the minimal constraint for (2), such a rule will be found if it exists. Finally, the

while loop (lines 12–14) will terminate only when either (a) no sound rule exists or (b) best

contains a maximally general rule, meeting criteria (3).

CEGIS. FindRule uses an off-the-shelf CEGIS engine [133] to solve the synthesis queries

at lines 11 and 14. This engine is sound and complete for finite (loop-free) programs and

inputs, which is the case for our queries.

Theorem 6.26 (Rule Synthesis). Let 〈S, src, tgt〉 be a specification and k̄ a bound on the

size of rule programs. FindRules(S, src, tgt, k̄) returns a set of rules R with the following

properties: (1) every R ∈ R best implements S for 〈src, tgt〉 under k̄; (2) R includes a sound

rule R of size at most k̄ if one exists; and (3) for every pattern p that refines or is refined by

R’s pattern, R includes a sound rule with pattern p and size k̄ if one exists.

Proof. Line 2 defines p0 to be the most refined pattern that matches s, so by Definition 6.23

and Theorem 6.25, p0 refines the pattern of every rule applicable to s. Since there are finitely

many such patterns (Definition 6.23), termination, soundness (1), and completeness (2–3)

follow from line 3 and Lemma 6.27.
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6.11 Appendix: Control Rules

In this section, we list all of the control rules used in the evaluation. Note that, unlike

the algebra domain, these are not axioms. These are rules collected from various published

Nonograms media used as comparison for RuleSy’s synthesized rules.

def rule -big -hint -basic:

with a = arbitrary(hint -basic ):

if value(a) + value(a) > linelen (a):

then fill(true , ( linelen (a) - value(a)), value(a))

def rule -big -hint:

with h = arbitrary(hint ):

if lec(h) > hsc(h):

then fill(true , hsc(h), lec(h))

def rule -edge -fill:

with h = constant(hint , 0) and

b = arbitrary(block ):

if lec(h) > end(b):

then fill(true , end(b), lec(h))

def rule -edge -fill/cell:

with h = constant(hint , 0) and

c = arbitrary(cell ):

if (lec(h) - 1) > index(c) and

true ?(c):

then fill(true , index(c) + 1, lec(h))
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def rule -edge -fill/cell/hint -basic:

with a = constant(hint -basic , 0) and

c = arbitrary(cell ):

if (value(a) - 1) > (index(c) - 0) and

true ?(c):

then fill(true , index(c) + 1, 0 + value(a))

def rule -edge -fill/true -cell:

with h = constant(hint , 0) and

t = constant(cell -t, 0):

if (lec(h) - 1) > index(t):

then fill(true , index(t) + 1, lec(h))

def rule -full -edge -gap:

with h = constant(hint , 0) and

g = constant(gap , 0) and

b = constant(block , 0):

if start(g) = start(b) and

value(h) > 1:

then fill(true , start(g) + 1, start(g) + value(h))

def rule -cross -small -gap -singleton:

with h = singleton(hint) and

g = arbitrary(gap):

if value(h) > size(g):

then fill(false , start(g), end(g))
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def rule -cross -small -gap -min:

with h = arbitrary(hint) and

g = arbitrary(gap):

if minimal(value(h)) and

value(h) > size(g):

then fill(false , start(g) + 0, start(g) + size(g))

def rule -cross -small -gap -left:

with h = constant(hint , 0) and

g = constant(gap , 0):

if value(h) > size(g):

then fill(false , start(g), end(g))

def rule -punctuate -max:

with h = arbitrary(hint) and

b = arbitrary(block ):

if maximal(value(h)) and

value(h) = size(b) and

start(b) > 0:

then fill(false , start(b) + -1, start(b) + 0)

def rule -punctuate -hint0:

with h = constant(hint , 0) and

b = constant(block , 0):

if lec(h) = start(b) and

size(b) > 1:

then fill(false , 1, size(b))
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def rule - mercury :

with h = constant(hint , 0) and

b = constant(block , 0):

if end(b) > 0 + value(h) and

value(h) >= (start(b) - 0):

then fill(false , 0, (end(b) - value(h)))

def rule -force -max:

with h = arbitrary(hint) and

g = arbitrary(gap):

if (g is unique where size(g) >= value(h)) and

value(h) + value(h) > size(g):

then fill(true ,

start(g) + size(g) - value(h),

start(g) + value(h))
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Chapter 7

A CASE STUDY ON DESIGNING PROGRAMMING
LANGUAGES FOR SYNTHESIS APPLICATIONS

The RuleSy framework relies heavily on the choice of input DSL. This chapter is con-

cerned with the process of how that DSL is designed. We can view this problem through two

different lenses: the practical question of whether end-users could successfully design DSLs

for use in RuleSy, and the broader question of how we might go about automating the DSL

design process itself.

The first is the practical consideration of whether it is reasonable to expect someone to

be able to successfully apply RuleSy (or something like it) to other domains. If we are

to suggest RuleSy might help in the domain model design process, we must understand

whether others can use it. A great deal of effort and time was spent by the authors developing

the languages used in the implementations of RuleSy for algebra and Nonograms. How well

could others do this task? What are the ways we might make this task easier? This is a

general challenge for all program synthesis systems: many other synthesis applications such

as the PROSE framework [104] or DeepCoder [10] rely on application-specific DSLs to be

successful. Very little has been written about the process of effective DSL design for synthesis

applications; papers present the final version of such DSLs without discussing the extensive

iterative development process that was likely behind them. What are the challenges and

barriers people face in DSL design for synthesis? How might we develop methods and tools

to make this process more accessible?

The second lens is a more abstract one. A recurring theme in this thesis has been

the (semi) automation of design tasks: automatically generating problems, generating pro-

gressions, generating domain models. Choosing the domain-specific language to use with
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RuleSy (or many other synthesis applications) is, itself, a design task. How we might be-

gin automating that task? The first step in answering such a question is to understand the

existing design process. What are the biggest challenges? What are the effective approaches?

In this chapter, we present a formative case study on DSL design for the Nonograms

RuleSy instantiation, aiming to understand the challenges and barriers to successful DSL

design for RuleSy. This study is done in the context of a tool intended to aid in the

DSL design process. Eventually, we want to build tools and methods to make this process

approachable and easy to do. In this chapter, we focus first on questions of what people do

when asked to solve this task. Can people successfully recreate the results presented in the

previous chapter? What challenges and barriers do people encounter? When given a tool

that aims to help with this process, which parts of the tool do people use, and how does that

shape their process? We begin to answer these questions with a formative user evaluation

in which participants attempted to create the Nonograms DSL for use in RuleSy. By

necessity, this case study used a simplified subtask of the full language design process, but

the results both (a) suggest that RuleSy is understandable to end-users and they can have

some success in (albeit contrived) usage of RuleSy, and (b) point us toward useful future

research questions in how to make the DSL design process easier.

7.1 Background

DSL design is a critical component of many synthesis-based systems and applications [52].

While some applications have a natural predefined language (e.g., superoptimization neces-

sarily targets the language it is optimizing), many others must choose an application-specific

language. This is fundamentally a design task: while parts of the DSL may be obviously

determined by technical constraints, other parts are subjective. However, these choices are

critically important for the application’s success.

For example, in the applications presented in this thesis, the task of choosing the DSL

is literally one of selecting the problem domain concepts on which rules are defined. What

these concepts should be and which are worthy of inclusion is a design problem that must
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be tackled by a domain expert. As another example, consider the PROSE framework [104],

used for programming-by-example applications in, e.g., Microsoft Excel macros. Choosing

particular constructs for the DSL amounts to deciding which kinds of programs can be

expressed concisely, or at all. What programs can be concisely expressed in the DSL has a

large impact on which programs the system synthesizes and suggests to users. Both program

synthesis researchers and software engineers building industrial synthesis applications must

be able to effectively design these DSLs.

Despite the challenging nature of this design problem and how crucial it is to the success

of (some) synthesis applications, very little has been written in the academic literature on

the DSL design process. Anecdotally, the development of the languages for RuleSy took

multiple years and many rounds of iteration. While we want to tackle the research problem

of how to make this process easier, we must first address the problem of understanding what

that process is and which parts are hard. Below, we document parts the language design

process and methods used by the authors in the creation of RuleSy.

The Design Process for the RuleSy Languages

To answer our research questions, we built a DSL editing tool for RuleSy to support a

limited DSL design task that could feasibly be completed in a couple hours. The structure

of this task and the affordances of the tool were based on the authors’ experience developing

the original DSLs for RuleSy (detailed in Sections 5.3 and 6.4). We describe this process

here, both to motivate our task/tool design and to document parts of the design process

used in the development of RuleSy.

Methods for Feedback. While the evaluation metrics described in Sections 5.7 and 6.7

were used to compare the quality of output from RuleSy, global measures such as coverage

on a test set or counts of rules synthesized do not lend themselves to figuring out how that

output might be improved or pinpointing particular issues in the current design. For feed-

back, we relied heavily on investigation of individual input/output examples. For instance,
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when developing the DSL for Nonograms, the first thing we typically checked to evaluate

a new variant of the DSL was how well it performed in synthesizing the control rules (Sec-

tion 6.11). That is, for each control rule, we would manually write (usually informally) how

this rule would be expressed in the current DSL, ran RuleSy on a single training example

that we would expect to result in that rule, and compare the two. New features were fre-

quently chosen specifically because they allowed a particular control rule to be expressible.

These particular examples were gathered from real-world sources such as textbooks or online

tutorials.

Debugging Synthesis Failure. When RuleSy fails to synthesize a rule for a particular

specification, such an outcome is typically caused by one of two issues: a problem with the

DSL (e.g., no sound program can be expressed that meets the specification), or a problem

with the synthesis algorithm (e.g., bugs in the implementation or practical limits such as

timeouts). In order to distinguish between these, our typical approach was to hand-write a

program that we believed meets the specification. By adding constraints to force the system

to use this program, we could pinpoint the mistake: if the program turned out to be unsound,

there was a bug in our DSL design caused by a mismatch in our mental model of rules and

the actual DSL. It is important to note that failure can be caused by too expressive of a

DSL: if the program space is too large, the synthesis algorithm will fail to find a program

before timing out even if one could be found.

7.2 System and Design Task

For this thesis, we ran a case study, asking users to design a Nonograms DSL for RuleSy.

In practice, the DSL design process takes place over a long period of time and involves

substantial engineering, making studying this process challenging. Thus, to make a case

study feasible, we must model a reasonable facsimile of the DSL design process. This involves

reducing the design space, removing the need for engineering, and building an interface to

facilitate the task. In this section, we describe the task and the tool built for the task.
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7.2.1 The DSL Design Task

The first way we shrink the design task to one feasible for a case study is by shrinking the

language design space. Rather than have users design the entire language from scratch, the

system provides a foundation on which the users will build. Beyond being necessary for

making the task easier to complete in limited time, limiting the DSL design space is ne-

cessitated by technological constraints as well: RuleSy expects its DSLs to be structured

in certain ways (detailed in Chapter 6) for soundness and performance. Furthermore, sub-

stantial DSL-specific engineering effort is required to make synthesis tractable. Fixing parts

of the language allows us to ensure these conditions are met regardless of the participants’

designs.

What parts of the language should be fixed, and which left for the user to design? Pro-

grams in the RuleSy DSL represent procedural knowledge for solving problems in the

domain. This means the DSL itself in some sense captures the concepts of the domain. As

discussed in previous chapters, this is primarily defined by the patterns: the elements on

which the patterns match represent conceptual units of the problem on which rules are de-

fined. Therefore, defining the language of patterns in the primary design task of DSL design,

so that is what we have the participants design.

The remainder of the language (conditions, actions, and the overall structure) are fixed.

This is a reasonable reduction (from the sense of language design) because these parts of the

language are obviously determined. For example, actions are fixed by the problem domain.

Conditions contain primarily basic elements such as boolean and integer arithmetic. Many

parts of the language design are fixed by the structure of RuleSy, as described in previous

chapters. Thus, while the original design process obviously involved iterating on all areas

of the language design, focusing on designing only the patterns while keeping the overal

structure fixed is somewhat reflective of the real-world process of applying RuleSy to new

domains. The primary challenge in the DSL-design portion of applying RuleSy to any new

domain will likely be choosing the patterns/concepts to use in the DSL.
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The DSL Design Space

Designing the patterns for the Nonograms DSL entails adding new pattern types, as defined in

Section 6.4. Specifically, this involves adding new pattern types for the syntax (Figure 6.7),

and new corresponding cases to the elements and method semantic functions (Figure 6.9).

The structure of patterns and the available matching functions remain the same. That is,

all patterns represent ordered sequences of state features. To define a new pattern type,

one needs to define both a mapping from states to a sequence of elements of that type

(the elements semantic function) as well as methods to access various boolean and integer

properties of those elements (the method semantic function).

Starting Language

Rather than starting users from a blank slate with no patterns, we prime the system with the

basic hint and cell patterns already available. This is done for two reasons: first, hints and

cells are the fundamental units of the Nonograms state, and thus is it reasonable to assume

that any designer would (at some point and probably quite early) include such features in

their DSL. Second, having a starting set of patterns enables us to have a starting set of

rule programs. Because we need to quickly teach users about the task and the parts of the

language being provided for them, such example programs are valuable for illustrating those

concepts.

The methods provided with these starting concepts are the minimal ones necessary to

define the state. In particular, the hint feature used in the implementation in Chapter 6

is more complex than the one provided for the case study. The geometric variations of the

big hint rule (e.g., Figure 6.4) require methods not provided; only the arithmetic variation

(Figure 6.11) can be expressed. Its semantics are shown in Figure 7.2.
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Precomputing Results

Another barrier to studying the DSL design process is the iteration time. In practice, com-

puting results for RuleSy takes hours or days. This makes studying multiple iterations in

a short study session impossible. To overcome this, we used RuleSy to precompute results

for a variety of language designs. Using both intuition from the development of the original

framework and information gathered from preliminary usability studies of the DSL design

tool, we selected a set of pre-defined patterns we expected users to explore and used this to

offer precomputed results.

Precomputation of results is possible due to the way RuleSy finds rules. Let L1 and

L2 be DSLs that are identical except that the patterns of L1 are a subset of the patterns of

L2. Because RuleSy enumerates over patterns during specification mining, for any given

mined specification, program synthesis is independent of the pattern language. RuleSy will

explore a subset of specifications for L1 compared to L2, meaning the synthesized rules for

L1 will be a subset of those synthesized for L2. Thus, given results from RuleSy, run on a

DSL L, we can efficiently calculate results from a hypothetical run of RuleSy on a language

that is a subset L′ of L by filtering the results for those using features from L′.

During the study, if the user stayed within the space of precomputed results, the system

could provide those results within seconds. If the user chose a feature outside of this space,

however, the system would have to be run normally. The study was performed in multiple

sessions (see Section 7.3.2), so such a computation could be run between sessions.

Other System Inputs

RuleSy requires several inputs beyond the DSL, such as a domain description and training

examples. For the purposes of this case study, these other inputs were fixed. The domain

description was already defined, so fixing it is natural. Fixing the training set and objective

function is less desirable, but necessary for the sake of this case study. For instance, precom-

puting results is only possible with a fixed training and testing set. We selected a training
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set of 8 input/output examples. Each of these training examples demonstrates one of the

control rules (Section 6.11) from the original evaluation of RuleSy(though not all control

rules were covered by these examples).

7.2.2 The DSL Design Tool

To support designing a DSL quickly in a user-study setting, we built a computer interface

that allows for both modifying the DSL and analyzing the quality of the DSL. This interface

displays several metrics that measure the quality of RuleSy’s output (and thus the quality

of the DSL) on the testing set. It further allows for the user to add/remove pattern types

from the DSL and recompute RuleSy’s output. We describe the interface in detail below.

The elements and affordances of this interface were based on the authors’ personal experience

developing the RuleSy DSLs. One of the questions we aim to answer with this case study

is which of the elements of the interface participants actually use or find helpful.

Metrics

For the purposes of the study, the DSL is evaluated against three metrics: coverage, com-

plexity, and synthesis time. The first two have been discussed extensively in this thesis: they

represent the trade-off between rules that allow for solving many problems and rules that

are concise. The metrics are simplified proxies of those used when evaluating the systems

in previous chapters, in order to make them simple to explain and efficient to evaluate in a

live setting. Rather than telling participants how to balance the trade-off, we ask them to

maximize coverage while keeping complexity and time low, allowing them to decide which

are more important.

Coverage. Coverage is measured in a similar manner to the evaluation of RuleSy in

Section 6.7. Using the same testing set as that evaluation, the tool first synthesizes rules

using RuleSy on the training set. Then, the tool applies every rule to every state in the

testing set, counting how many cells are filled in. The complexity score is the ratio of cells
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filled in by the synthesized rules over the total possible number of cells to fill in (and thus

ranges from 0 to 1). For the purposes of tool responsiveness, rules are evaluated purely on

the starting states in the test set; we do not use state decomposition nor applying rules to a

fixed point.

For a given pattern feature F , we show two feature-specific complexity measures. First,

we show a ratio of coverage: the coverage score of rules only using F over the total coverage

score. Second, we show a ratio of coverage for which F is necessary: the coverage score of

rules using F , but not counting any cells filled in by rules that do not use F , all over the

total coverage score. The former is a measure of raw coverage: how many cells do rules using

F fill in? The latter is a measure of redundancy: how many cells are filled in only by rules

using F?

Complexity. The complexity metric is a composite metric that tries to approximate the

relative complexity of the best rules used in synthesis. This metric captures two ideas:

given two rules of equal generality: more concise is better, and given a set of rules of equal

conciseness, using fewer to cover the same set of states is better. The metric calculates a

score based on the covered testing states. Every rule R is assigned a complexity cost C(R)

that is essentially the size of the program’s syntax. Then, for every cell c covered by at

least one synthesized rule, we sum up the cost of the cheapest rule that covers c, plus an

additional (small) constant for every additional rule that covers c. For a given feature F ,

the per-feature complexity score is the complexity of the rules using F (as calculated above)

over the complexity of all rules.

Synthesis Time. The final metric shown is the total processor-hours required for synthesis.

This includes successes, failures, and timeouts. Notably, individual work items typically do

not result in direct failure (UNSAT); successes (SAT) take much less time to find than

failures, so the system typically hits the timeout before failing. This is also shown on a per-

feature basis by showing the ratio of processor-hours spent synthesizing rules whose patterns
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include a particular feature.

Interface

The software tool (shown in Figure 7.1) supports three primary actions: (1) modifying the

DSL, (2) viewing various metrics of the output of running RuleSy for the current DSL, and

(3) verifying human-specified programs. Both actions 1 and 3 use a Wizard-of-Oz (WOZ)

style interface. We first discuss the system model and then discuss each action in turn.

Figure 7.1: A screenshot of the DSL editing tool. The current pattern types are shown in
the top left, along with the metrics. At the bottom of the screen, the training examples are
shown, along with the best rules synthesized for each example (additional training examples
are off the bottom of the screen).

Model. The tool models the DSL’s design, representing the DSL as a set of pattern fea-

tures. It models both currently active features as well as features that were used but are

currently disabled. The tool tracks the history of this design as the user makes edits, used
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for displaying how the metrics change over time. Participants could name features (including

precomputed ones) whatever they wished; our predetermined names were not exposed.

Defining the DSL. The tool shows the current set of active and inactive features as a

list of checkboxes. The user can toggle any of these features on or off. The list begins

with only the basic hint and cell features. Adding new features to this list is done via a

WOZ interface. The user describes the feature to the researcher using any of examples,

pseudocode, mathematical notation, or informal description. To determine precisely what

feature the user wishes to add, the researcher asks disambiguating questions via example

inputs.

A WOZ-style interface was chosen due to lack of reasonable alternatives. Asking partic-

ipants to write code themselves would require a substantial amount of training and practice

with the system; informal methods of defining the DSL are necessary to allow users to define

features not already in the tool. The alternative—using some in-software method to explore

a pre-determined set of features—is no better. In early usability tests, users would reliably

attempt to enumerate all of the features baked into the system by exploiting the interface.

Such behavior is far removed from the real-world setting we hope to understand.

Due to the fact that results were precomputed, some leeway was given when participants

defined features that very nearly matched a precomputed feature. If they desgined a feature

with elements semantics that exactly matched a precomputed feature but whose method

semantics differed only slightly, we made the precomputed feature available to them. By

this we mean things such as methods having different names or missing methods that are

combinations of others. For example, every participant designed a feature using segments

(Definition 6.3), but often chose different names for the start and size functions or omitted

the end function. We still provided them with the precomputed features since the end

function is expressible by adding start and size.
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Viewing Results. After selecting a language, the user could press a button to view

RuleSy’s output on that language. Metrics for the current DSL as displayed, both global

and feature-specific. The tool also shows a timeline of the history of each of the global met-

rics from each iteration of the DSL. Below a list of the training examples was shown. For

example, the tool displayed (a) whether any rule was found that covered that example, and

(b) a list of the best programs (those with maximal coverage) for each feature combination

covering that feature. Along with the programs, the system showed a set of testing examples

to distinguish program behavior. The user could interactively click on the programs and see

how their behaviors on the testing program differed.

Verifying Rules. To support the activity of interrogating unexpected synthesis failures,

the tool allows (through WOZ) the user to verify programs. Given a program, the tool runs

the verifier, showing both a counter-example to soundness (if one exists) and the program’s

behavior on the training inputs. So that users do not have to become proficient in the

concrete syntax of the DSL, we use a WOZ-style interface in which the user describes to the

researcher (via pseudocode or natural language) the program they wish to verify, and the

researcher handles producing the correct syntax.

7.3 Methodology

To investigate how people would approach designing languages for RuleSy, we ran a case

study using our DSL-design tool on the task described above. Sessions were approximately

two hours per participant, and participants were people with some prior programming syn-

thesis experience.

7.3.1 Recruitment

We recruited participants from researchers and graduate students familiar with program

synthesis. This experience ranged from taking a class or using synthesis as part of work to

being a synthesis researcher. We gave participants $50 in gift cards for their time.
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7.3.2 Procedure

Case study sessions were run one participant at a time. Each participant had two sessions

of 60 minutes each. Sessions began with obtaining consent and an introductory explanation

of the research and study goals.

Participants were then introduced to the Nonograms problem domain by playing through

a tutorial (specifically, “Tutorial 1” of “Playing Picross”) of the Picross S2 game for the

Nintendo Switch.1 During this tutorial, the researcher interjected to draw attention to

the strategies the tutorial was presenting and encouraged participants to think about such

strategies and how they would be defined.

Following the introduction to Nonograms, the researcher described the task in detail. The

structure of the RuleSy system was described in basic detail. Two example rule programs

(one of which is shown in Figure 6.11) were presented in complete detail: participants were

provided with a handout showing the concrete syntax of the these programs. The researcher

then described the parts of the RuleSy DSL that were fixed. Finally, the participant was

instructed in how to define new parts of the DSL, using the starting “hint” and “cell” features

as illustrative examples.

After being instructed on the task, participants were introduced to the software tool. The

researcher described each part of the interface and the metrics and information presented.

Participants were informed about the metrics on which their output would be measured.

This procedure from start up to this point typically took approximately 40 minutes.

After this, participants were told to solve the task using the software tool while thinking

aloud. They were permitted to ask questions of the researcher at any point. We collected

data of both the tool usage and notes from the participants’ think-alouds. Participants were

additionally asked a handful of questions at the conclusion of the final session relating to

their previous experience, which parts of the interface they found useful, and which parts of

the task they found challenging.

1This game is from the same series from which we drew example rules and problems in Chapter 6.
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7.3.3 Data Analysis

Our analysis examined the DSLs designed by participants and notes from the participants

thinking aloud while performing the task. Due to the simplified and constrained nature of

the task, limited number of participants, and potential interference from frequently interact-

ing with the researcher due to the Wizard-of-Oz style interface, we limit ourselves to broad

descriptive observations rather than detailed statistical analysis. Beyond a thesis-specific

question of whether participants could successfully develop languages for RuleSy, the pur-

pose of the study was to gain a better understanding of future directions for research. We

do not have expectations of how the observations would generalize to other settings but are

drawing conclusions about what things might be worthwhile to investigate in other settings,

nor do we expect to be able to draw useful explanatory observations from the data. In

particular, we looked at: (1) what DSL features participants designed and how they differed

from the original RuleSy implementation, (2) whether participants were able to understand

the task and make progress on it, (3) which parts of the interface participants claimed were

useful for the task, (4) which parts of the task participants claimed were challenging, and

(5) broad observations about how participants approached the task.

7.4 Results

We recruited 4 participants in the manner described. When asked about their experience

with program synthesis, two had taken classes on program synthesis or formal methods,

one had some experience using synthesis for software engineering, and one was a full-time

synthesis researcher. We will refer to them as P1 through P4 when discussing results.

7.4.1 Designed Languages

Table 7.1 lists all of the features designed by participants, with the original features shown for

comparison. None of the participants designed the same DSL as our original one presented in

Chapter 6, though every feature from our DSL was also designed by at least one participant.
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The semantics for these features is shown in Figure 7.2. All 4 participants managed to design

DSLs in which a program was synthesized for each of the 8 training examples.

Feature Original P1 P2 P3 P4
hint 7 7

block 7 7 7 7

gap 7 7

segment-e 7 7

seg-e/x-border 7 7 7 7

segments 7

hint/sum 7

hint/pairs 7

block/max-sat 7

Table 7.1: Table listing the various features that each participant designed, not including
the two (hint/basic and cell) given at the start of the task. The original features used in
the implementation from Chapter 6 are shown for comparison.

7.4.2 Question Responses

After the task, participants were asked which parts of the user interface they relied on or

found useful for the task, and which parts of the task they found challenging.

Regarding parts of the interface that were useful, all 4 participants reported relying on

the training examples. However, P1, P2, and P3 specifically noted that they only used these

examples in a binary way: if an example was not covered at all, they chose a feature to cover

it. After a training example was covered, they were not able to get useful information to

improve the metrics, especially coverage. In particular, they said that the example programs

and example inputs shown with each training example did not help them. P2 noted that

it was difficult to know what to do once an example was covered, and P1 said they were

unable to figure out, looking at the synthesized programs, whether features were good as

measured by coverage or not. All participants focused on the metrics, particular when

choosing features to remove. Regarding feature-specific metrics, P1 and P2 reported using
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elementsJhint/basicK〈H,V 〉 = 〈Hi, V 〉
methodJbl_valueK〈h, V 〉 = h
methodJbl_linelenK〈h, V 〉 = |V |
elementsJsegment-eKs = segments(s, {empty})
elementsJseg-e/x-borderKs = empty segments of s not bordered by true cells
elementsJsegmentsKs = all single-valued segments of s paired with their value
methodJseg_true?K〈seg, v〉 = v = true
methodJseg_false?K〈seg, v〉 = v = false
methodJseg_empty?K〈seg, v〉 = v = empty
elementsJhint/sumKs = same semantics as hint (plus the below method)
methodJnumhintsK〈H,V, idx〉 = |H|
elementsJhint/pairsKs = consecutive pairs of hints
elementsJblock/max-satKs = [arg maxs∈B size(s)] if |B| > 0,

maxs∈B size(s) = max hint value in s, and
max segment size in B is unique else []
where B = segments(s, {true})

Figure 7.2: Semantics for patterns added by participants, grouped by pattern type. Some
notation is described in Section 4.2, and some of these semantics reference semantics from
the DSL defined in Section 6.4. For instance, all of the segment types (e.g., segment-e) use
the same methods as the standard segment types (e.g., block).
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the “unique coverage” metric much more than the others, though P2 asked why the process

of using these metrics to remove features could not be done automatically by the system.

Regarding challenges, both P2 and P4 said that the task was initially difficult to adapt

to, with P2 specifically saying, “This is not a normal way of thinking." They were more

inclined to write rules directly. P3 also mentioned that it was difficult to figure out where

to start on the task. However, both P2 and P4 also noted that after working on the task,

they were able to understand what was going on and what they were supposed to do. P1

said that they did not have a hard time coming up with many new features, but did have

a difficult time whittling them back down to reduce complexity, particularly when features

were redundant in some way. P2 noted that it was difficult to think beyond the training

examples; during the task, both P2 and P4 tried to add additional training examples to the

tool, which was not possible in this study due to results being precomputed. P2 also said

they would likely have a very hard time in a real-world setting where the iteration time is

on the order of hours of days: it would be difficult for them to remember what features they

had designed or what they meant when coming back to them. Indeed, between two session

that were a couple days apart, P2 misremembered one of their designed features.

7.5 Discussion

That every participant was able to design a language that at the very least covered the

training set suggests that participants were able to understand RuleSy and the task. The

languages designed differed substantially from each other and the original. Notably, one of

the features, seg-e/x-border, performed better than the original’s gap on the complexity

metric while only being slightly worse on the coverage metric, suggesting that participants

in some ways eclipsed the quality of the original language. While participants noted that

working with RuleSy was unnatural at first, all of them were able to succeed after working

on the task. Overall, these results provide existential evidence that users could successfully

design (at least part of) the input languages for RuleSy or similar systems, at various levels

of expertise with program synthesis.
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While it is difficult to draw generalizable conclusions from the data, we can, from obser-

vations of the participants as well as their answers to the questions, determine hypotheses to

be investigated in future studies, both for RuleSy specifically and program synthesis devel-

opment more generally. Every participant focused initially on ensuring the initial training

examples were satisfied, and multiple tried to add new training examples or used them to

help design new features. After satisfying all of the training examples, participants struggled

figuring out what to do next or how to improve the metrics. Because the user interface of

the DSL design tool strongly afforded focusing on the training examples, it is difficult to

disentangle the influence of the UI and particular task from the language design approaches

of the participants. For instance, though participants reported not getting much utility out

of showing the synthesized programs, that may be due to the interface or to the fact that

the study task forced them to learn a new concrete syntax very quickly. Nevertheless, future

research could investigate how concrete input/output examples could be used to make this

process easier. Particularly because the participants only used training examples as binary

indicators of success rather than deeply investigating, it seems that more training examples

could be beneficial for prompting designers to create new features or modify existing features

that improve coverage. Would some kind of training example management interface aid de-

signers? Are there domain-agnostic heuristics we could add to the tool to automatically show

failing testing examples to the designer that could plausibly allow them to make progress?

Would showing results via examples rather than concrete programs help?

When deciding which features to remove from the language to lower complexity, partici-

pants reported primarily relying on the “unique coverage” metric. Features with little to no

unique coverage were considered for removal. This makes sense, because the unique coverage

metric directly measure redundancy, which makes the complexity metric rise. This suggests

that the unique coverage metric may be more useful than the others and is worth further

investigation. As P2 noted, however, these decisions probably could be made automatically

by the system. A computer obviously cannot easily create new features from nothing, but

it can mechanically explore subsets of existing features to choose the best according to the
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metrics. Future Research might explore such automation in DSL design tools.

7.6 Limitations

Our research was a small case study with 4 participants. The biggest limitation are the con-

trivances necessary to make a task doable in a couple hours. Because our primary goal was to

demonstrate that users can develop reasonable DSLs for RuleSy, we had participants work

on that particular task. However, studying and observing the process of DSL development

for program synthesis on a researcher-given task is challenging without the kinds of sacrifices

we needed to make. In order to gain a better understanding of general program synthesis

language development, alternative methodologies should be pursued, such as interviewing

practitioners or studying existing tasks in real-world contexts.

The limitations of the tool necessary to allow participants to work in a short time period

prevented them from taking actions that they were inclined to do. For example, multiple

participants wanted to add other training examples to explore particular rules and features

they had in mind. This is a reasonable approach, but participants were unable to do this

due to the fact that we needed to precompute all results.

The study gave participants a user interface for working with the DSL. This was a nec-

essary part of making the task approachable enough to be feasibly done in a short user

study, but the tools affordances likely influenced participant behavior. It is hard to untangle

whether the challenges encountered were caused by the interface or by the nature of the task.

Lastly, this study was on a specific synthesis application. While we think some of the

results suggest hypotheses for general future work in making program synthesis more ap-

proachable, it is possible that little of the observed behavior would be seen in applications

beyond the one studied.

7.7 Related Work

Though programming languages and formal methods systems do not typically have user eval-

uations, researchers have investigated human factors questions for programming languages.



211

In the broader field of programming language design, decades of research exist in understand-

ing the usability of programming languages, for professionals and students [96]. Specifically

within the formal methods community, researchers have recently begun to investigate the

usability of formal methods tools [36, 18], which traditionally have been evaluated only for

their guarantees and performance.

Traditional synthesis frameworks require a significant amount of bespoke effort to cre-

ate [48], leading to recent efforts in creating frameworks to reduce the authorial burden in

creating synthesis tools. Sketch is a tool that takes, as input, a partial program in a C-

like language, with holes for certain subexpressions to be filled in through synthesis [124].

Rosette [133] is a framework for synthesis and verification of DSL programs that uses sym-

bolic execution to automatically convert queries to SMT. These DSLs are implemented in

a subset of Racket, a variant of Lisp. Smten [135] is another framework that automatically

creates SMT, except Smten uses a Haskell-inspired custom input language. Our framework

has so far used Rosette for synthesis. Many learning domains (especially those in mathe-

matics) can be expressed in SMT theories, and Rosette’s affordance of describing the DSL

semantics in Racket allows for freedom to quickly define DSLs for synthesis.

While syntactic restrictions are a good way to inject domain-specific knowledge to make

synthesis tractable, applications often still require hand-turning the synthesis algorithm with

domain-specific insights to be sufficiently performant. Recent efforts have investigated meth-

ods to separating this domain-specific insight from the search algorithm, allowing program

synthesis frameworks to be instantiated for new domains without as much effort or synthesis

expertise as previous approaches. PROSE (a.k.a. FlashMeta) [104] is a synthesis frame-

work that allows for DSL designer to inject domain-specific knowledge in what the authors

call witness functions, which (roughly) describe the inverse semantics of a DSL’s operators.

These witness functions are used to deductively decompose the specification into smaller

subproblems, on which a generic enumerative search synthesis algorithm is used to find pro-

grams. Synapse [19] is an optimal synthesis framework (built on Rosette) for specifying

a high-level, domain-specific search strategy using a series of sketches (as opposed to the
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typical single sketch). This enables syntactic constraints not otherwise expressible, such as

restricting programs to single static assignment (SSA) form. This ability to inject domain

knowledge without having to modify the synthesis algorithm is highly desirable. Our frame-

work is designed in this way. However, both our framework and these frameworks require an

appropriately designed DSL to work effectively, which itself involves critical domain insights,

synthesis expertise, and likely much iteration [50].

7.8 Conclusion

This chapter presented a small case study in which participants designed DSLs for use in

RuleSy. Our study focused on (1) understanding whether users could successfully design

languages for RuleSy, and (2) investigating the challenges of designing DSLs for program

synthesis to motivate future research. Participants of various backgrounds in program syn-

thesis were able to understand RuleSy and design DSLs of comparable quality to the one

developed by the authors. The limited nature of the study and contrived nature of the

task prevent us from drawing firm or conclusions about the language design process, but

the cast study indicates that focusing on individual training examples is an approach worth

investigating further. Future work should investigate this process with other methodologies

(e.g., interviews with practitioners) to get a broader understanding of the process and its

challenges. However, the results show existential evidence that people are able to understand

RuleSy enough to design effective DSLs to be used with RuleSy.
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Chapter 8

CONCLUSION

This thesis has presented RuleSy, a framework for automatically synthesizing domain

models for educational domains by framing the program as one of program synthesis. Unlike

prior frameworks for learning domain models which rely on examples, RuleSy is the first

framework to automatically learn strategies using only a domain description to guarantee

sound rules. Thanks to its novel algorithms, RuleSy is able to synthesize sound and useful

rules that generalize beyond given training examples. We instantiated RuleSy for multiple

domains, and our evaluation has shown that RuleSy is capable of generating rules of com-

parable quality to human-created rules for those domains. The framework aims to ease the

process of effective domain model design. This is motivated, in addition to cited work, by

two novel applications presented in this thesis. The first proposed a novel mixed-initiative

interface for designing progressions in games, and the second proposed and evaluated an

algorithm for fully generated progressions. A core feature of RuleSy is that its user pro-

vides the framework with a domain-specific language in which to represent rules, allowing a

domain expert to bias RuleSy and the rules it synthesizes. To evaluate the feasibility of

using RuleSy and specifically designing input DSLs, we ran a small case study in which

participants were successful in creating good DSLs for a modified version of RuleSy. This

thesis represents a step towards technology that enables designers to quickly and easily craft

formal models of human expertise and solving strategies, enabling a range of applications in

education, game design, and beyond.

Evaluation of RuleSy Output. Evaluating the quality of any educational content is chal-

lenging, both methodologically and logistically. In this thesis, our evaluation of RuleSy’s
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output was limited to broad comparisons to existing materials such as textbooks or docu-

ment puzzle game strategies. The structure of the rules learned by framework was based

on current understanding on human cognition in similar domains. However, before using

RuleSy in a practical setting, a much more rigorous evaluation of its output is warranted,

particularly with respect to educational utility. For example, one might evaluating rules syn-

thesized by RuleSy on students in a classroom setting to investigate, for instance, whether

they can be understood or whether they are useful for problem solving. Related questions

include further exploration of tools and applications that can be built on top of the domain

models generated by framework.

Utility of RuleSy. This thesis proposes a particular solution for making the domain

model design process easier and more effective. In particular, we argue that synthesis can

benefit designers in ways such as ensuring sound rules are generated or exploring parts of

the design space that a human might miss. While these are real benefits for these design

problems and while our framework design was motivated by documented techniques for

domain model development [67], further investigation is required. The practices for domain

model development across the various industries are not well documented; investigations

such as interviews with practicing designers should be undertaken to ensure tools are solving

real-world problems. Specifically, it is undeniable that this system offloads one challenging

design problem from a person by giving them a qualitatively different but still challenging

design problem of designing the inputs for RuleSy. We performed a case study to evaluate

the feasibility of (and uncover the challenges involved in) using RuleSy, particularly in

design the DSL, but future work should perform longer-term studies on less simplified tasks

to get a better understanding of the potential benefits of tools like RuleSy. The answers to

these questions likely varies wildly between industries and applications; beyond education,

one could explore more deeply in applications such as game development and design.
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Broader Applications to Programming Languages. There is additional future work

in research questions more generally applicable to the program synthesis community. For

example, in Chapter 5, we suggested that tree-rewrite rules may have applications for tra-

ditional programming languages application such as compilers. Many compilers use rewrite

rules, either for optimization or as a more fundamental and necessary part of the compilation

process. As another example, proof assistants like Coq also function through use of rewrite

rules; in this case, proof macros for trying to apply various proof strategies. Not only is it

challenging to write sound rewrite rules by hand, but there is (as with educational domains)

a challenging design problem of deciding which combination of rules should be included and

in what order they should be used. Future work might investigate both how to build such

rewrite rules more easily or building more effective systems than can be done by hand. Can

they be composed in the way we compose algebra axioms for create more useful rules? In

some ways, such applications of rule synthesis are easier to investigate than the educational

applications in that there are reasonable objective criteria on which to evaluate output (e.g.,

do the synthesized rules enable compilers to create more optimized programs more efficiently

than without?).

Designing DSLs for Program Synthesis. The research question posed in Chapter 7 has

only begun to be explored: how can people develop effective languages for program synthesis

applications? Answering this question is crucial to the practical success of program synthesis,

especially in applications where the language design is not obvious, such as programming-

by-example. Our study uncovered some of the challenges encountered by language designers

in a simplified task using a single synthesis tool, so a lot more investigative work remains

to be done. One could, for instance, interview practicing developers of synthesis systems

or run user studies on different applications. Once we have a better understanding on how

people approach this design problem and which parts are challenging, the next questions

are in how to build tools and methods for effective design. Our case study uncovered some

potential such designs. For example, participants relied heavily on concrete training examples
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to drive their language design, and struggled to improve the language once the individual

input/output examples were satisfied. How can we build tools centered around concrete

examples to help users understand their language designs? Could tools automatically suggest

plausible additional input/output examples that are not covered to drive the human language

designer’s attention in a fruitful way?

Looking Forward. Each of these research directions, when realized, empower users to

create things not otherwise possible. Domain models power existing important educational

technology such as computer tutors, so making it easier to design them effectively improves

existing applications. Beyond this, automatic generation of domain models enables exciting

unrealized applications such as advanced game design tools which are otherwise not fea-

sible due to the prohibitive cost of designing domain models by hand. Effective domain

model generation applies beyond technology: it could be used for the design of classroom

or textbook curricula, impacting education for students everywhere. Applying these ideas

beyond education, there are many applications without programming languages that could

benefit greatly from automated rule learning, from easier-to-construct compilers to better

automated proof assistants. Finally, future work in methods and tools for DSL design enables

more people to more easily create program synthesis systems, helping advance research and

realize applications. The common thread is empowering users: empowering designers and

domain experts, empowering builders of programming systems, and empowering novices of

all domains to be able to create artifacts not otherwise within reach. This thesis represents

a step towards realizing these goals.
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